Home » Biology » Epigenetics


Start here

Epigenetics is the study of biological mechanisms that switch genes on and off. Epigenetics affects how genes are read by cells, and thus how they produce proteins. Here are a few important points:

  • Epigenetics Controls Genes. Certain circumstances in life can cause genes to be silenced or expressed over time. In other words, they can be turned off (becoming dormant) or turned on (becoming active).

  • Epigenetics Is Everywhere. What you eat, where you live, who you interact with, when you sleep, how you exercise, even aging – all of these can eventually cause chemical modifications around the genes that will turn those genes on or off over time.

    Additionally, in certain diseases such as cancer or Alzheimer’s, various genes will be switched into the opposite state, away from the normal/healthy state.

  • Epigenetics Makes Us Unique. Even though we are all human, why do some of us have blonde hair or darker skin? Why do some of us hate the taste of mushrooms or eggplants? Why are some of us more sociable than others? The different combinations of genes that are turned on or off is what makes each one of us unique. Furthermore, there have been indications that some epigenetic changes can be inherited.

  • Epigenetics Is Reversible. With 20,000+ genes, what will be the result of the different combinations of genes being turned on or off? The possible arrangements are enormous! But if we could map every single cause and effect of the different combinations, and if we could reverse the gene’s state to keep the good while eliminating the bad… then we could theoretically* cure cancer, slow aging, stop obesity, and so much more.

This introduction has been excerpted from WhatIsEpigenetics.com

How does this happen?

We currently know of three systems that attach to genes, and turn them on or off. More systems may be discovered!

DNA methylation

histone modification

non-coding RNA (ncRNA)-associated gene silencing



More content TBA

Example 1

gene environment interactions in human obesity

From The importance of gene–environment interactions in human obesity, Hudson Reddon, Jean-Louis Guéant, David Meyre, Clinical Science Aug 08, 2016, 130

Learning Standards



%d bloggers like this: