KaiserScience

Home » Articles posted by New England Blogger (Page 40)

Author Archives: New England Blogger

Four types of multiverses

Most people believe that the universe began at the Big Bang, and that our universe is the only one that has ever existed. Others believe that the universe is cyclical, and that universes existed before ours: those universes, it is hypothesized, collapsed and were replaced by later universes.

When Georges Lemaître, a Belgian physicist and Roman Catholic priest, first began to develop the Big Bang Theory (in 1927), many scientists assumed the former – this is the only universe that has ever existed. In this view, it makes no sense to ask “what happened before the Big Bang?” as there was no before.

In more recent years, scientists have studied the possibility of a multi-verse. Our universe may not be the only one that has existed; perhaps others existed before our own, and others may exist after our own. Also, perhaps other universes  – in some way removed from our own – simultaneously exist.  In this view, one indeed may ask “what happened before the Big Bang?” as there was a time before our universe.

Is there evidence of a multiverse?

At the present time, most scientists say that we don’t have any direct evidence. However, astronomical and physics evidence, as interpreted through quantum mechanics and general relativity, may suggest that other universes may exist.

As such, physicists have developed models of how our universe may have been created, perhaps from the destruction of a previous universe, or perhaps ours branched off from some other.

On the other hand, some physicists hold that certain results of quantum mechanics experiments, indeed, are direct evidence of our universe physically interfering with other “nearby” quantum multiverse.

Two of the most well known adherents of this view are Max Tegmark (his work is the basis of this article) as well as David Deutsch.  See The Fabric of Reality by David Deutsch (Penguin, 1998)

A Physicist Explores the Multiverse Quantum Computers Predict Parallel Worlds by Susan Barber

David Deutsch’s multiverse carries us beyond the realms of imagination

New evidence for the multiverse—and its implications

Pilot wave theory really implies multiverse theory

Mag Tegmark Article – the four types of multiverse are

LEVEL I: REGIONS BEYOND OUR COSMIC HORIZON

Summary: The simplest type of parallel universe is simply a region of space that is too far away for us to have seen yet. The farthest that we can observe is currently about 4 ! 1026 meters, or 42 billion lightyears—the distance that light has been able to travel since the big bang.  (The distance is greater than 14 billion light-years because cosmic expansion has lengthened distances.) Each of the Level I parallel universes is basically the same as ours. All the differences stem from variations in the initial arrangement of matter.

How far away parallel Universe multiverse Tegmark

LEVEL II: OTHER POST-INFLATION BUBBLES

Summary: A somewhat more elaborate type of parallel universe emerges from the theory of cosmological inflation. The idea is that our Level I multiverse—namely, our universe and contiguous regions of space—is a bubble embedded in an even vaster but mostly empty volume. Other bubbles exist out there, disconnected from ours. They nucleate like raindrops in a cloud. During nucleation, variations in quantum fields endow each bubble with properties that distinguish it from other bubbles.

Level II Multiverse Tegmark

LEVEL III: THE MANY WORLDS OF QUANTUM PHYSICS

Summary: Quantum mechanics predicts a vast number of parallel universes by broadening the concept of “elsewhere.” These universes are located elsewhere, not in ordinary space but in an abstract realm of all possible states. Every conceivable way that the world could be (within the scope of quantum mechanics) corresponds to a different universe.

Yet these parallel universes might make their presence felt in laboratory experiments, such as wave interference and quantum computation.

Level III multiverse Tegmark quantum

LEVEL IV: Mathematical universe hypothesis

Existing outside of ur space and time, they are almost impossible to visualize; the best one can do is to think of them abstractly. We can at least create static sculptures that represent the mathematical structure of the physical laws that govern them.

For example, consider a simple universe: Earth, moon and sun, obeying Newton’s laws. To an objective observer, this universe looks like a circular ring (Earth’s orbit smeared out in time) wrapped in a braid (the moon’s orbit around Earth).

Other shapes embody other laws of physics (a, b, c, d).

According to Max Tegmark, this paradigm solves various problems concerning the foundations of physics.

Level IV multiverse Tegmark mathematical

A Level IV multiverse comes from the idea that our physical world is a mathematical structure.

It means that mathematical equations describe not merely some limited aspects of the physical world, but all aspects of it.

 

External resources

Max Tegmark multiverse website. MIT.Edu

Scientific American article:Parallel Universes

Infographic: Inflation Meets Many Worlds

Are Parallel Universes Unscientific Nonsense? Insider Tips for Criticizing the Multiverse. Scientific American

The Physics of David Deutsch (older version)

David Deutsch homepage, Centre for Quantum Computation, Oxford Univ

Related articles

What Is (And Isn’t) Scientific About The Multiverse, by Ethan Siegel, Forbes

 

Learning Standards

2016 Massachusetts Science and Technology/Engineering Standards
Students will be able to:
* respectfully provide and/or receive critiques on scientific arguments by probing reasoning and evidence and challenging ideas and conclusions, and determining what additional information is required to solve contradictions

Next Generation Science Standards: Science & Engineering Practices
● Ask questions that arise from careful observation of phenomena, or unexpected results, to clarify and/or seek additional information.
● Ask questions that arise from examining models or a theory, to clarify and/or seek additional information and relationships.

Warp drive

Through science fiction, most people are familiar with the idea of warp drive. It is a fictional form of FTL (Faster Than Light travel) Its most popular use is in the science-fiction series Star Trek.

Could warp drive potentially be possible?

Enterprise at warp speed Star Trek

The first mention of warp drive in science fiction is in “Islands of Space,” by John W. Campbell. 1931

 

The warping of spacetime can already be seen through the phenomenon known as gravitational lensing.

Mass warping space gravitational lens

One example of gravitational lensing is how the presence of a black hole can warp the path of light around it. Here we see a black hole, very far away from a galaxy. But this black hole passes between the galaxy and us. The rays of light warp around the black hole, making it appear as if the galaxy far behind it is being affected.

Albert Einstein discovered that we can explain the way that gravity works is by imagining space being laid out in a grid, and the presence of mass warps this grid.

Gravity General Relativity warping The Elegant Universe

From “The Elegant Universe”, PBS series NOVA. 2003.

Warp drive in real physics

The Alcubierre drive is a speculative analysis of physics which shows that warp drive may in fact be possible. It is based on a solution of Einstein’s field equations in general relativity.

It was first proposed by Mexican theoretical physicist Miguel Alcubierre -“The Warp Drive: Hyper-fast travel within general relativity” Classical and Quantum Gravity, 1994.

In his analysis, a spacecraft could effectively achieve a kind of FTL travel if a configurable energy-density field lower than that of vacuum (that is, negative mass) could be created.

Alcubierre Warp Drive

From a demo on Wolfram.com by Thomas Mueller.

Rather than exceeding the speed of light within a local reference frame, a spacecraft would traverse distances by contracting space in front of it and expanding space behind it, resulting in effective faster-than-light travel.

In this analysis, objects still cannot accelerate to the speed of light within normal spacetime; therefore it doesn’t violate the laws of General Relativity.

Instead, the Alcubierre drive shifts space around an object so that the object would arrive at its destination faster than light would in normal space.

“Space-time bubble is the closest that modern physics comes to the “warp drive” of science fiction. It can convey a starship at arbitrarily high speeds. Space-time contracts at the front of the bubble, reducing the distance to the destination, and expands at its rear, increasing the distance from the origin (arrows). The ship itself stands still relative to the space immediately around it; crew members do not experience any acceleration. Negative energy (blue) is required on the sides of the bubble.”

– Ford and Roman

worm4

Lawrence H. Ford and Thomas A. Roman. Sci Am article.

Another view

Negative energy warp bubble

Challenges and progress

In the 1990s:

The metric proposed by Alcubierre is consistent with the Einstein field equations. However, it may not be physically meaningful. We are not certain that the mathematical solutions are possible in the real world. If so then this warp drive will not be possible.

Even if it is physically meaningful, that does not necessarily mean that a drive can be constructed. The proposed mechanism of the Alcubierre drive, in its original form, implies a negative energy density and therefore requires exotic matter.

So if exotic matter with the correct properties can not exist, then the drive could not be constructed.

News and updates

In 2021 Erik Lentz made what appears to be significant progress, Breaking the warp barrier: hyper-fast solitons in Einstein–Maxwell-plasma theory.  He looked at the problem from a different point and found a solution that would only need sources with positive energy densities. No “exotic” negative energy densities are needed.

See Press release: Breaking the warp barrier for faster-than-light travel, Astrophysicist at Göttingen University discovers new theoretical hyper-fast soliton solutions, and Star Trek’s Warp Drive Leads to New Physics Researchers are taking a closer look at this science-fiction staple, Scientific American, By Robert Gast, 7/13/2021.

Alexey Bobrick, and Gianni Martire have written a paper describing their ideas for a warp drive and have published it in IOP’s Classical and Quantum Gravity. Bob Yirka, A potential model for a real physical warp drive Phys.Org 3/4/2021

Introducing physical warp drives, Alexey Bobrick and Gianni Martire, Classical and Quantum Gravity

The Alcubierre warp drive is an exotic solution in general relativity. It allows for superluminal travel at the cost of enormous amounts of matter with negative mass density. For this reason, the Alcubierre warp drive has been widely considered unphysical. In this study, we develop a model of a general warp drive spacetime in classical relativity that encloses all existing warp drive definitions and allows for new metrics without the most serious issues present in the Alcubierre solution.

We present the first general model for subliminal positive-energy, spherically symmetric warp drives; construct superluminal warp-drive solutions which satisfy quantum inequalities; provide optimizations for the Alcubierre metric that decrease the negative energy requirements by two orders of magnitude; and introduce a warp drive spacetime in which space capacity and the rate of time can be chosen in a controlled manner.

Conceptually, we demonstrate that any warp drive, including the Alcubierre drive, is a shell of regular or exotic material moving inertially with a certain velocity. Therefore, any warp drive requires propulsion. We show that a class of subluminal, spherically symmetric warp drive spacetimes, at least in principle, can be constructed based on the physical principles known to humanity today.

– Alexey Bobrick and Gianni Martire, Introducing physical warp drives, 2021 Class. Quantum Grav. 38 105009

and New warp drive research dashes faster than light travel dreams – but reveals stranger possibilities Sam Baron, The Conversation, 4/16/2021

A new video from Sabine Hossenfelder explains the current state of science on warp drives: Are warp drives science now?, 1/15/2022

Problematic requirements

This idea is fascinating, but we don’t actually know that it could work for sure. Some of the many problems with warp drive are discussed here:

NASA –Faster-than-Speed-of-Light Space Travel? ‘Will ‘Warp Bubbles’ Enable Dreams of Interstellar Voyages?’ ” DailyGalaxy. com,  9/21/2018

Spaceship design

The IXS Enterprise is a very hypothetical design. It was designed by Mark Rademaker with NASA scientist Dr. Harold White. Mike Okuda also brought input, and designed the Ship’s insignia.

IXS Enterprise / IXS-11

IXS Enterprise (Wikipedia)

Beware of fake news

More today than ever we need to be aware that much material posted in social media, and even published by some otherwise legitimate news sources, is either misleading, incorrect, or even sometimes deliberately false. “Fake news.”  This happens quite often when it comes to modern physics topics, from non-mainstream engineers or scientists. Very often, an individual will convince themself that they have made a major discovery, and sometimes they convince media to publish such claims.

A recent example of this – In The Debrief, Christopher Plain writes

Warp drive pioneer and former NASA warp drive specialist Dr. Harold G “Sonny” White has reported the discovery of an actual, real-world “Warp Bubble.” And, according to White, this first of its kind breakthrough by his Limitless Space Institute (LSI) team sets a new starting point for those trying to manufacture a full-sized, warp-capable spacecraft.

In an interview, White added that “our detailed numerical analysis of our custom Casimir cavities helped us identify a real and manufacturable nano/microstructure that is predicted to generate a negative vacuum energy density such that it would manifest a real nanoscale warp bubble, not an analog, but the real thing.

“To be clear, our finding is not a warp bubble analog, it is a real, albeit humble and tiny, warp bubble,” White told The Debrief, “hence the significance.”

“Some work we’ve been doing for DARPA Defense Science Office is the study of some custom Casimir cavity geometries,”

“While conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model,” reads the actual findings published in the peer-reviewed European Physical Journal, “a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric.”

Or put more simply, as White did in a recent email to The Debrief, “To my knowledge, this is the first paper in the peer-reviewed literature that proposes a realizable nano-structure that is predicted to manifest a real, albeit humble, warp bubble.”

Christopher Plain, DARPA funded researchers accidentally discover the world’s first warp bubble, The debrief, 12/6/2021

In science, how can we tell the difference between real news and fake news?

◉ Adopt a position of skepticism: Suspend judgement until sufficient evidence is examined. “In science we approach claims skeptically. That doesn’t mean that that we don’t believe anything. Rather, to be skeptical means we don’t accept a claim unless we are given compelling evidence. Skepticism is a provisional approach to claims.” – Michael Shermer

◉ Require that anyone making extraordinary claims provide evidence to substantiate those claims.

◉ See how the claims are analyzed by that person’s peers in the scientific community. Peer review

◉ Ask Do multiple lines of evidence support the claim? Or do different lines of evidence point in different directions?

Dr. Ethan Siegel has written an article about how Harold “Sonny” White in fact didn’t discover a warp bubble, or anything like it. See I wrote the book on warp drive. No, we didn’t accidentally create a warp bubble.

He writes further

Looking at a map of energy density and going, “hmm, that’s kind of similar to the energy density map of an Alcubierre drive” doesn’t justify the unsupported claims. If you want to say “we have a warp bubble, folks” then you need to ask yourself, “what would the measurable properties be that would confirm this is a warp bubble?” and then go ahead and measure those. That’s how you confirm it. No plans have ever been made to accomplish that. More importantly, you need to be able to measure (or at least attempt to measure) the effect you want to detect!

Further reading

Negative Energy. Wormholes and Warp Drive. Scientific American Jan 2000

Faster-than-light (FTL) Travel in Science Fiction. Dan Koboldt

Alcubierre warp drive, Wikipedia

Faster Than Light, Wikipedia

Negative Energy, Wormholes and Warp Drive, Scientific American, Jan 2000, by Lawrence H. Ford and Thomas A. Roman

Learning Standards

2016 Massachusetts Science and Technology Curriculum Framework
Appendix VIII: Value of Crosscutting Concepts and Nature of Science in Curricula

ETS3. Technological Systems.  5.3-5-ETS3-1(MA). Use informational text to provide examples of improvements to existing technologies (innovations) and the development of new technologies (inventions). Recognize that technology is any modification of the natural or designed world done to fulfill human needs or wants.

9. Influence of Engineering, Technology, and Science on Society and the Natural World

In grades 9–12, students can describe how modern civilization depends on major technological systems, such as agriculture, health, water, energy, transportation, manufacturing, construction, and communications. Engineers continuously modify these systems to increase benefits while decreasing costs and risks. New technologies can have deep impacts on society and the environment, including some that were not anticipated.

SAT Subject Test: Physics

Quantum phenomena, such as photons and photoelectric effect

Atomic, such as the Rutherford and Bohr models, atomic energy levels, and atomic spectra. Nuclear and particle physics, such as radioactivity, nuclear reactions, and fundamental particles. Relativity, such as time dilation, length contraction, and mass-energy equivalence.

College Board Standards for College Success: Science

Enduring Understanding 1D: Classica mechanics can not describe all properties of objects.

Ampère’s circuital law

I’m caching a copy of www.maxwells-equations.com/ampere/amperes-law.php
This isn’t to negate the copyright of the original website, which I direct people to! I create backups like this on occasion, because even favorite teaching websites sometimes disappear (maybe the owner didn’t pay to renew the domain name.) And I wouldn’t want something so valuable to disappear.

___________________

On this page, we’ll explain the meaning of the last of Maxwell’s Equations, Ampere’s Law, which is given in Equation [1]:

amperes-law

Ampere was a scientist experimenting with forces on wires carrying electric current. He was doing these experiments back in the 1820s, about the same time that Farday was working on Faraday’s Law. Ampere and Farday didn’t know that there work would be unified by Maxwell himself, about 4 decades later.

Forces on wires aren’t particularly interesting to me, as I’ve never had occassion to use the very complicated equations in the course of my work (which includes a Ph.D., some stints at a national lab, along with employment in the both defense and the consumer electronics industries). So, I’m going to start by presenting Ampere’s Law, which relates a electric current flowing and a magnetic field wrapping around it:

ampere-simple

Equation [2] can be explained: Suppose you have a conductor (wire) carrying a current, I. Then this current produces a Magnetic Field which circles the wire.

The left side of Equation [2] means: If you take any imaginary path that encircles the wire, and you add up the Magnetic Field at each point along that path, then it will numerically equal the amount of current that is encircled by this path (which is why we write encircled current for encircled or enclosed current).

Let’s do an example for fun. Suppose we have a long wire carrying a constant electric current, I[Amps]. What is the magnetic field around the wire, for any distance r [meters] from the wire?

Let’s look at the diagram in Figure 1. We have a long wire carrying a current of I Amps. We want to know what the Magnetic Field is at a distance r from the wire. So we draw an imaginary path around the wire, which is the dotted blue line on the right in Figure 1:

ampere-example1

Figure 1. Calculating the Magnetic Field Due to the Current Via Ampere’s Law.

Ampere’s Law [Equation 2] states that if we add up (integrate) the Magnetic Field along this blue path, then numerically this should be equal to the enclosed current I.

Now, due to symmetry, the magnetic field will be uniform (not varying) at a distance r from the wire. The path length of the blue path in Figure 1 is equal to the circumference of a circle of radius r:  2 x Pi x r.

If we are adding up a constant value for the magnetic field (we’ll call it H), then the left side of Equation [2] becomes simple:

ampere-example2

Hence, we have figured out what the magnitude of the H field is. And since r was arbitrary, we know what the H-field is everywhere. Equation [3] states that the Magnetic Field decreases in magnitude as you move farther from the wire (due to the 1/r term).

So we’ve used Ampere’s Law (Equation [2]) to find the magnitude of the Magnetic Field around a wire. However, the H field is a Vector Field, which means at every location is has both a magnitude and a direction. The direction of the H-field is everywhere tangential to the imaginary loops, as shown in Figure 2. The right hand rule determines the sense of direction of the magnetic field:

ampere-example3

Figure 2. The Magnitude and Direction of the Magnetic Field Around a Wire.

Manipulating the Math for Ampere’s Law

We are going to do the same trick with Stoke’s Theorem that we did when looking at Faraday’s Law. We can rewrite Ampere’s Law in Equation [2]:

ampere-example4

On the right side equality in Equation [4], we have used Stokes’ Theorem to change a line integral around a closed loop into the curl of the same field through the surface enclosed by the loop (S).

We can also rewrite the total current (I enclosed, I enc) as the surface integral of the Current Density (J):

ampere-example5

So now we have the original Ampere’s Law (Equation [2]) rewritten in terms of surface integrals (Equations [4] and [5]). Hence, we can substitute them together and get a new form for Ampere’s Law:

ampere-example6

Now, we have a new form of Ampere’s Law: the curl of the magnetic field is equal to the Electric Current Density. If you are an astute learner, you may notice that Equation [6] is not the final form, which is written in Equation [1]. There is a problem with Equation [6], but it wasn’t until the 1860s that James Clerk Maxwell figured out the problem, and unified electromagnetics with Maxwell’s Equations.

 

Displacement Current Density

Ampere’s Law was written as in Equation [6] up until Maxwell. So let’s look at what is wrong with it. First, I have to throw out another vector identity – the divergence of the curl of any vector field is always zero:

div-curl

So let’s take the divergence of Ampere’s Law as written in Equation [6]:

divergence of ampere's law [Equation 8]

So Equation [8] follows from Equations [6] and [7]. But it says that the divergence of the current density J is always zero. Is this true?

If the divergence of J is always zero, this means that the electric current flowing into any region is always equal to the electric current flowing out of the region (no divergence). This seems somewhat reasonable, as electric current in circuits flows in a loop. But let’s look what happens if we put a capacitor in the circuit:

a-c circuit with a capacitorFigure 3. A Voltage Applied to A Capacitor.

Now, we know from electric circuit theory that if the voltage is not constant (for example, any periodic wave, such as the 60 Hz voltage that comes out of your power outlets) then current will flow through the capacitor. That is, we have I not equal to zero in Figure 3.

However, a capacitor is basically two parallel conductive plates separated by air. Hence, there is no conductive path for the current to flow through. This means that no electric current can flow through the air of the capacitor. This is a problem if we think about Equation [8]. To show it more clearly, let’s take a volume that goes through the capacitor, and see if the divergence of J is zero:

divergence not zero when a capacitor is presentFigure 4. The Divergence of J is not Zero.

In Figure 4, we have drawn an imaginary volume in red, and we want to check if the divergence of the current density is zero. The volume we’ve chosen, has one end (labeled side 1) where the current enters the volume via the black wire. The other end of our volume (labeled side 2) splits the capacitor in half.

We know that the current flows in the loop. So current enters through Side 1 of our red volume. However, there is no electric current that exits side 2. No current flows within the air of the capacitor. This means that current enters the volume, but nothing leaves it – so the divergence of J is not zero. We have just violated our Equation [8], which means the theory does not hold. And this was the state of things, until our friend Maxwell came along.

Maxwell knew that the Electric Field (and Electric Flux Density (D) was changing within the capacitor. And he knew that a time-varying magnetic field gave rise to a solenoidal Electric Field (i.e. this is Farday’s Law – the curl of E equals the time derivative of B). So, why is not that a time varying D field would give rise to a solenoidal H field (i.e. gives rise to the curl of H). The universe loves symmetry, so why not introduce this term? And so Maxwell did, and he called this term the displacement current density:

displacement current density [Equation 9]

This term would “fix” the circuit problem we have in Figure 4, and would make Farday’s Law and Ampere’s Law more symmetric. This was Maxwell’s great contribution. And you might think it is a weak contribution. But the existance of this term unified the equations and led to understanding the propagation of electromagnetic waves, and the proof that all waves travel at the same speed (the speed of light)! And it was this unification of the equations that Maxwell presented, that led the collective set to be known as Maxwell’s Equations. So, if we add the displacement current to Ampere’s Law as written in Equation [6], then we have the final form of Ampere’s Law:

final form of Ampere's Law [Equation 10]

And that is how Ampere’s Law came into existance!

Intrepretation of Ampere’s Law

So what does Equation [10] mean? The following are consequences of this law:

 

  • A flowing electric current (J) gives rise to a Magnetic Field that circles the current
  • A time-changing Electric Flux Density (D) gives rise to a Magnetic Field that circles the D field

    Ampere’s Law with the contribution of Maxwell nailed down the basis for Electromagnetics as we currently understand it. And so we know that a time varying D gives rise to an H field, but from Farday’s Law we know that a varying H field gives rise to an E field…. and so on and so forth and the electromagnetic waves propagate – and that’s cool.

 

This website is educational. Materials within it are being used in accord with the Fair Use doctrine, as defined by United States law.

§107. Limitations on Exclusive Rights: Fair Use

Notwithstanding the provisions of section 106, the fair use of a copyrighted work, including such use by reproduction in copies or phone records or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use, the factors to be considered shall include:

the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes;
the nature of the copyrighted work;
the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and
the effect of the use upon the potential market for or value of the copyrighted work. (added pub. l 94-553, Title I, 101, Oct 19, 1976, 90 Stat 2546)

Carbon dating

Introduction

“At an archaeological dig, a piece of wooden tool is unearthed – and the archaeologist finds it to be 5,000 years old. A child mummy is found high in the Andes – and the archaeologist says the child lived more than 2,000 years ago. How do scientists know how old an object or human remains are? What methods do they use and how do these methods work?

Carbon-14 dating is a way of determining the age of archaeological artifacts of a biological origin up to about 50,000 years old. It is used in dating things such as bone, cloth, wood and plant fibers that were created in the relatively recent past by human activities.”

  • How Stuff Works, How Carbon-14 Dating Works, Marshall Brain

“The method was developed by Willard Libby in the late 1940s and soon became a standard tool for archaeologists. Libby received the Nobel Prize in Chemistry for his work in 1960. ” – Wikipedia

How does it work?

Radiocarbon is constantly being created in the atmosphere by the interaction of cosmic rays with atmospheric nitrogen.

matthew2262 Radiocarbon dating

From the matthew2262 wordpress blog.

The resulting radiocarbon combines with atmospheric oxygen to form radioactive carbon dioxide.

That is incorporated into plants by photosynthesis.

Animals then acquire 14 C by eating the plants.

When the animal or plant dies, it stops exchanging carbon with its environment, and from that point onwards the amount of 14 C it contains begins to decrease, as the 14
C undergoes radioactive decay.

Measuring the amount of 14 C in a sample from a dead plant or animal such as a piece of wood or a fragment of bone provides information that can be used to calculate when the animal or plant died.

The older a sample is, the less 14 C there is to be detected, and because the half-life of 14 C (the period of time after which half of a given sample will have decayed) is about 5,730 years.

The oldest dates that can be reliably measured by this process date to around 50,000 years ago, although special preparation methods occasionally permit accurate analysis of older samples.

– Carbon Dating, Wikipedia

****************

As years go by, how much C14 is left?

carbon dating part 1

C12 does not decay and remains constant in a sample, whereas C14 decays at an even, constant rate.

By measuring the ratio of C12 to C14, we can understand how long a sample has been around for.

The half life of C 14 is around 5,730 years. As seen by the second graph, this means that if a sample has half of the C14 it should usually have, it has been around for 5,730 years. A quarter of the amount, double that time, one eight of the original amount, more still.

Carbon dating is only as accurate as the consistency of it’s decay rate, which is unchanging and extremely uniform.

It is almost exclusively used for organic material as all life on earth is carbon based.

There is a misconception that carbon dating is used to date the age of the earth. For longer time scales, other elements are used, based on the same principles.

Graphs from a video by Scientific American that explains carbon dating. Watch the full video here How Does Radiocarbon Dating Work? – Instant Egghead #28: Scientific American

  • text from http://blunt-science.tumblr.com/post/109954909373/a-representation-of-the-age-span-carbon-dating-is

_______________________________________________________________________________

Is radiocarbon dating reliable?

Excerpted from National Center for Science Education, by Christopher Gregory Weber:

http://ncse.com/cej/3/2/answers-to-creationist-attacks-carbon-14-dating

Radiocarbon dating can easily establish that humans have been on the earth for over twenty thousand years …. it is one of the most reliable of all the radiometric dating methods.

Question: How does carbon-14 dating work?

carbon dating part 1

Answer:
Cosmic rays in the upper atmosphere are constantly converting the isotope nitrogen-14 (N-14) into carbon-14 (C-14 or radiocarbon).

Living organisms are constantly incorporating this C-14 into their bodies along with other carbon isotopes.

When the organisms die, they stop incorporating new C-14

The old C-14 starts to decay back into N-14 by emitting beta particles.

The older an organism’s remains are, the less beta radiation it emits because its C-14 is steadily dwindling at a predictable rate.

So, if we measure the rate of beta decay in an organic sample, we can calculate how old the sample is. C-14 decays with a half-life of 5,730 years.

______________________________________________________________

Question: Kieth and Anderson radiocarbon-dated the shell of a living freshwater mussel and obtained an age of over two thousand years. ICR creationists claim that this discredits C-14 dating. How do you reply?

Answer: It does discredit the C-14 dating of freshwater mussels, but that’s about all. Kieth and Anderson show considerable evidence that the mussels acquired much of their carbon from the limestone of the waters they lived in and from some very old humus as well.

Carbon from these sources is very low in C-14 because these sources are so old and have not been mixed with fresh carbon from the air. Thus, a freshly killed mussel has far less C-14 than a freshly killed something else, which is why the C-14 dating method makes freshwater mussels seem older than they really are.

When dating wood there is no such problem because wood gets its carbon straight from the air, complete with a full dose of C-14.

____________________________________________________________________

Question: A sample that is more than fifty thousand years old shouldn’t have any measurable C-14. Coal, oil, and natural gas are supposed to be millions of years old; yet creationists say that some of them contain measurable amounts of C-14, enough to give them C-14 ages in the tens of thousands of years. How do you explain this?

Answer: Very simply. Radiocarbon dating doesn’t work well on objects much older than twenty thousand years, because such objects have so little C-14 left that their beta radiation is swamped out by the background radiation of cosmic rays and potassium-40 (K-40) decay.

cosmic-rays-earth-space

Younger objects can easily be dated, because they still emit plenty of beta radiation, enough to be measured after the background radiation has been subtracted out of the total beta radiation. However, in either case, the background beta radiation has to be compensated for, and, in the older objects, the amount of C-14 they have left is less than the margin of error in measuring background radiation. As Hurley points out:

Without rather special developmental work, it is not generally practicable to measure ages in excess of about twenty thousand years, because the radioactivity of the carbon becomes so slight that it is difficult to get an accurate measurement above background radiation. (p. 108)

Cosmic rays form beta radiation all the time; this is the radiation that turns N-14 to C-14 in the first place. K-40 decay also forms plenty of beta radiation. Stearns, Carroll, and Clark point out that “. . . this isotope [K-40] accounts for a large part of the normal background radiation that can be detected on the earth’s surface” (p. 84).

This radiation cannot be totally eliminated from the laboratory, so one could probably get a “radiocarbon” date of fifty thousand years from a pure carbon-free piece of tin. However, you now know why this fact doesn’t at all invalidate radiocarbon dates of objects younger than twenty thousand years and is certainly no evidence for the notion that coals and oils might be no older than fifty thousand years.

____________________________________________________________________________________________

Question: Creationists such as Cook (1966) claim that cosmic radiation is now forming C-14 in the atmosphere about one and one-third times faster than it is decaying. If we extrapolate backwards in time with the proper equations, we find that the earlier the historical period, the less C-14 the atmosphere had.

If we extrapolate as far back as ten thousand years ago, we find the atmosphere would not have had any C-14 in it at all. If they are right, this means all C-14 ages greater than two or three thousand years need to be lowered drastically and that the earth can be no older than ten thousand years. How do you reply?

Answer: Yes, Cook is right that C-14 is forming today faster than it’s decaying. However, the amount of C-14 has not been rising steadily as Cook maintains; instead, it has fluctuated up and down over the past ten thousand years. How do we know this? From radiocarbon dates taken from bristlecone pines. There are two ways of dating wood from bristlecone pines: one can count rings or one can radiocarbon-date the wood.

Since the tree ring counts have reliably dated some specimens of wood all the way back to 6200 BC, one can check out the C-14 dates against the tree-ring-count dates. Admittedly, this old wood comes from trees that have been dead for hundreds of years, but you don’t have to have an 8,200-year-old bristlecone pine tree alive today to validly determine that sort of date. It is easy to correlate the inner rings of a younger living tree with the outer rings of an older dead tree. The correlation is possible because, in the Southwest region of the United States, the widths of tree rings vary from year to year with the rainfall, and trees all over the Southwest have the same pattern of variations.

When experts compare the tree-ring dates with the C-14 dates, they find that radiocarbon ages before 1000 BC are really too young—not too old as Cook maintains. For example, pieces of wood that date at about 6200 BC by tree-ring counts date at only 5400 BC by regular C-14 dating and 3900 BC by Cook’s creationist revision of C-14 dating (as we see in the article, “Dating, Relative and Absolute,” in the Encyclopaedia Britannica). So, despite claims, C-14 before three thousand years ago was decaying faster than it was being formed and C-14 dating errs on the side of making objects from before 1000 BC look too young, not too old.

_______________________________________________________________

Question: But don’t trees sometimes produce more than one growth ring per year? Wouldn’t that spoil the tree-ring count?

Answer: If anything, the tree-ring sequence suffers far more from missing rings than from double rings. This means that the tree-ring dates would be slightly too young, not too old.

Of course, some species of tree tend to produce two or more growth rings per year. But other species produce scarcely any extra rings. Most of the tree-ring sequence is based on the bristlecone pine.  This tree rarely produces even a trace of an extra ring; on the contrary, a typical bristlecone pine has up to 5 percent of its rings missing. Concerning the sequence of rings derived from the bristlecone pine,  Ferguson says:

In certain species of conifers, especially those at lower elevations or in southern latitudes, one season’s growth increment may be composed of two or more flushes of growth, each of which may strongly resemble an annual ring.

Such multiple growth rings are extremely rare in bristlecone pines, however, and they are especially infrequent at the elevation and latitude (37� 20′ N) of the sites being studied. In the growth-ring analyses of approximately one thousand trees in the White Mountains, we have, in fact, found no more than three or four occurrences of even incipient multiple growth layers. (p. 840)

In years of severe drought, a bristlecone pine may fail to grow a complete ring all the way around its perimeter; we may find the ring if we bore into the tree from one angle, but not from another. Hence at least some of the missing rings can be found. Even so, the missing rings are a far more serious problem than any double rings.

Other species of trees corroborate the work that Ferguson did with bristlecone pines.  Before his work, the tree-ring sequence of the sequoias had been worked out back to 1250 BC. The archaeological ring sequence had been worked out back to 59 BC. The limber pine sequence had been worked out back to 25 BC.

The radiocarbon dates and tree-ring dates of these other trees agree with those Ferguson got from the bristlecone pine.  But even if he had had no other trees with which to work except the bristlecone pines, that evidence alone would have allowed him to determine the tree-ring chronology back to 6200 BC. …

______________________________________________________________________

Question: Does outside archaeological evidence confirm the C-14 dating method?

Answer: Yes. When we know the age of a sample through archaeology or historical sources, the C-14 method (as corrected by bristlecone pines)  agrees with the age within the known margin of error.

For instance, Egyptian artifacts can be dated both historically and by radiocarbon, and the results agree. At first, archaeologists used to complain that the C-14 method must be wrong, because it conflicted with well-established archaeological dates; but, as Renfrew has detailed, the archaeological dates were often based on false assumptions.

One such assumption was that the megalith builders of western Europe learned the idea of megaliths from the Near-Eastern civilizations. As a result, archaeologists believed that the Western megalith-building cultures had to be younger than the Near Eastern civilizations.

Many archaeologists were skeptical when Ferguson’s calibration with bristlecone pines was first published, because, according to his method, radiocarbon dates of the Western megaliths showed them to be much older than their Near-Eastern counterparts.

However, as Renfrew demonstrated, the similarities between these Eastern and Western cultures are so superficial that the megalith builders of western Europe invented the idea of megaliths independently of the Near East. So, in the end, external evidence reconciles with and often confirms even controversial C-14 dates.

One of the most striking examples of different dating methods confirming each other is Stonehenge. C-14 dates show that Stonehenge was gradually built over the period from 1900 BC to 1500 BC, long before the Druids, who claimed Stonehenge as their creation, came to England.

Astronomer Gerald S. Hawkins calculated with a computer what the heavens were like back in the second millennium BC, accounting for the precession of the equinoxes, and found that Stonehenge had many significant alignments with various extreme positions of the sun and moon (for example, the hellstone marked the point where the sun rose on the first day of summer). Stonehenge fits the heavens as they were almost four thousand years ago, not as they are today, thereby cross-verifying the C-14 dates.

Textbooks

Relative Ages of Rocks: WIkiBooks

(WikiBooks: A project hosted by the Wikimedia Foundation for the creation of free content textbooks)

http://en.wikibooks.org/wiki/High_School_Earth_Science/Relative_Ages_of_Rocks

http://en.wikibooks.org/wiki/High_School_Earth_Science/Absolute_Ages_of_Rocks

External links

Willard Libby and Radiocarbon Dating. American Chemical Society

Learning Standards

A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012), from the National Research Council of the National Academies.

By the end of grade 12. Radioactive decay lifetimes and isotopic content in rocks provide a way of dating rock formations and thereby fixing the scale of geological time.

College Board Standards for College Success: Science

ES.3 Earth’s History: Relative and Absolute dating. Students understand that various dating methods — relative and absolute — have been used to determine the age of Earth.

Suggested Connections. Between Earth Science and Other Disciplines: Evidence of Common Ancestry and Divergence (LS.1.1); Living Systems and the Physical Environment (LS.3.1); Nuclear Chemistry (C.1.6); Nuclear Interactions and the Conservation of Mass–Energy (P.2.3)

Benchmarks: American Association for the Advancement of Science.

Knowledge of radioactivity helps them understand how rocks can be dated, which helps them appreciate the scale of geologic time… Scientific evidence indicates that some rock layers are several billion years old. 4C/H6** (BSL)

Peptide bonds – How we make proteins

2 amino acids can join to form a peptide.

A very long peptide is known as a protein.

When they join one of the amino acid’s loses an H atom, while the other loses an OH moiety (part of a molecule)  They join together to form H2O (water.) This is a condensation reaction.

peptide bond formation 1

Doc Kaiser’s Microbiology Home Page (Gary E. Kaiser)

 

Here is another animation of the same process

The CONH link created is called a peptide bond (red)
Water (blue) is removed.

This process can be continued repeatedly to form longer peptides (eventually, when they are over 50 amino acids long, we call them proteins.)

peptide bond formation 2

BioTopics.co.uk by Richard Steane

The monomer here is an amino acid.

The polymer here is a peptide or protein.

These are 20 different types of common amino acids.

Amino acids are bonded together to make peptides, or proteins.

A peptide is just a small protein, less than 50 amino acids (aa) long.

Proteins are much larger, 100 aa, 500 aa, even 1,000 aa.

A chain of amino acids folds up into a shape.

Every protein has its own shape.

 

If all land ice melted how would coastlines change

Sea level rise in the last century

This image from High-tide flood risk is accelerating, putting coastal economies at risk, Renee Collini, The Conversation, 6/14/2021, Coastal Climate Resilience Specialist, NOAA Sea Grant, Mississippi State University.

She writes

As sea level rises, it can be easy to miss the subtlety of higher water. It’s much harder to overlook saltwater more frequently flooding streets, impeding daily life and making existing problems worse.

The frequency of high-tide flooding along the U.S. coasts has doubled since 2000, and it’s expected to increase five to 15 times more in the next 30 years, the National Oceanic and Atmospheric Administration warns in a new report released July 14, 2021.

I work with coastal communities in the northern Gulf of Mexico that are facing the risks of rising seas as they try to avoid preventable damages and costs, such as infrastructure failures and falling property values. Information like the NOAA report is critical to helping these communities succeed.

Last year, the U.S. averaged four days of high-tide flooding, but that number doesn’t tell the whole story – regionally, several areas saw far more. There were record-breaking numbers of high-tide flooding days in 2020 along the Gulf of Mexico and southeast Atlantic coasts. The city of Bay St. Louis, Mississippi, jumped from three days of high-tide flooding in 2000 to 22 days in 2020.

Sea level changes over last 10,000 years

Scientists have used evidence to reconstruct sea-level rise around America’s northeast coast over the last 10,000 years.

New Jersey going back 10,000 years in research newly published in the Journal of Quaternary Science. To do this, they collected sediment cores drilled tens of meters below ground from coastal marshes, then examined the sediment back in a lab for microscopic organisms that only exist at specific depths below sea level. Salt marsh grasses also fossilized within the sediment were used to radiocarbon-date the samples.

The 10 maps contained in the GIF below show the movement of sea level at 1,000-year intervals leading up today:

https://www.citylab.com/environment/2013/05/if-gif-10000-years-sea-level-rise-doesnt-freak-you-out-nothing-will/5751/

sea rise GIF Influence of tidal-range change and sediment compaction on Holocene relative sea-level change in New Jersey,

HORTON, B. P., ENGELHART, S. E., HILL, D. F., KEMP, A. C., NIKITINA, D., MILLER, K. G. and PELTIER, W. R. (2013), Influence of tidal-range change and sediment compaction on Holocene relative sea-level change in New Jersey, USA. J. Quaternary Sci., 28: 403–411

If This GIF of 10,000 Years of Sea Level Rise Doesn’t Freak You Out, Nothing Wil

Boston

Boston underwater: How the rising sea levels will affect the city

Also

What Could Disappear. New York Times Sunday Review.

Quote

“If we keep burning fossil fuels indefinitely, global warming will eventually melt all the ice at the poles and on mountaintops, raising sea level by 216 feet. Explore what the world’s new coastlines would look like.

“The maps here show the world as it is now, with only one difference: All the ice on land has melted and drained into the sea, raising it 216 feet and creating new shorelines for our continents and inland seas.

There are more than five million cubic miles of ice on Earth, and some scientists say it would take more than 5,000 years to melt it all. If we continue adding carbon to the atmosphere, we’ll very likely create an ice-free planet, with an average temperature of perhaps 80 degrees Fahrenheit instead of the current 58.”

from National Geographic Magazine, What the World Would Look Like if All the Ice Melted

Map 1

The entire Atlantic seaboard would vanish, along with Florida and the Gulf Coast. In California, San Francisco’s hills would become a cluster of islands and the Central Valley a giant bay. The Gulf of California would stretch north past the latitude of San Diego—not that there’d be a San Diego.

Ice melt north america

Map 2

The Amazon Basin in the north and the Paraguay River Basin in the south would become Atlantic inlets, wiping out Buenos Aires, coastal Uruguay, and most of Paraguay. Mountainous stretches would survive along the Caribbean coast and in Central America.

Ice melt South America

Map 3

London? A memory. Venice? Reclaimed by the Adriatic Sea. Thousands of years from now, in this catastrophic scenario, the Netherlands will have long since surrendered to the sea, and most of Denmark will be gone too. Meanwhile, the Mediterranean’s expanding waters will also have swelled the Black and Caspian Seas.

Ice melt Europe

Map 3

Land now inhabited by 600 million Chinese would flood, as would all of Bangladesh, population 160 million, and much of coastal India. The inundation of the Mekong Delta would leave Cambodia’s Cardamom Mountains stranded as an island.

Ice melt Asia

Map

East Antarctica: The East Antarctica ice sheet is so large—it contains four-fifths of all the ice on Earth—that it might seem unmeltable. It survived earlier warm periods intact. Lately it seems to be thickening slightly—because of global warming.

The warmer atmosphere holds more water vapor, which falls as snow on East Antarctica. But even this behemoth is unlikely to survive a return to an Eocene Climate.

West Antarctica: Like the Greenland ice sheet, the West Antarctic one was apparently much smaller during earlier warm periods. It’s vulnerable because most of it sits on bedrock that’s below sea level.The warming ocean is melting the floating ice sheet itself from below, causing it to collapse. Since 1992 it has averaged a net loss of 65 million metric tons of ice a year.

Ice melt Antarctica

All maps here by: Jason Treat, Matthew Twombly, Web Barr, Maggie Smith, NGM Staff. Art Kees Veenebos. From Sept. 2013 National Geographic Society

What the World Would Look Like if All the Ice Melted (National Geographic)

.

Antarctic mantle plume

Let’s All Calm Down and Make Sense of That Antarctic Mantle Plume

Ryan F. Mandelbaum, Gizmodo, 11/8/2017

Three decades ago, scientists began to study the possibility that there was a plume of hot rock coming up from the mantle, heating parts of Western Antarctica. Back in September, researchers published results of a model showing how such a plume might affect the Antarctic ice sheet. Today, these headlines started to appear:

antarctic plume headlines

And my brain felt like it started to leak out of my ears. So we’re going to present to you what actually happened, what we know about the plume, and why you shouldn’t worry about “something monstrous.”

It’s definitely a neat idea from a scientific perspective. “I was interested because my first impression was that it’s surprising,” Hélène Seroussi, scientist at NASA’s Jet Propulsion Laboratory told Gizmodo. “There’s this feature under the ice and we still have ice present there. It was interesting to reconcile these two things that were contradictory in the first place.”

Seroussi and her group then tried to build a model of what would happen if a mantle plume did exist there and see what such a plume’s effects on the ice sheet and heating in the ice might be. This model, aided by observations from a NASA satellite, helped explain the amount of heat such a plume might add. It could even melt several centimeters of ice right above, and explain some of the heat creating Antarctica’s hidden lakes and rivers. The researchers published the model in the Journal of Geophysical Research: Solid Earth.

NSF Zina Deretsky Antarctica

The plume would have been there for around fifty million years, and the ice sheet would have formed atop it. It likely affected the way ice melted at the end of the last Ice Age. But it’s not really something to worry about. “It’s been there forever, it will remain there for a really long time,” said Seroussi. “We don’t have to worry about it. But at the same time, as the future brings more heat… the ice will probably be warmer in this area than in other places.”

The presence and modeling of such heating is important data to have to understand the future of the Antarctic ice sheet. After all, warm ice flows faster than colder ice, like warm honey flows faster than cold honey.

But no one has actually measured a plume. There’s just a new model to help explain a hypothesis. A research associate from the University of Texas, Duncan Young, explained to Gizmodo that the paper “is a valuable use of the advances in ice sheet modeling” integrating the sensitivity of the ice sheet into it. He points out that there’s more up-to-date-data that can be added, including satellite observations. Seroussi also told Gizmodo that more direct observations could help explain what was happening.

So there you have it, dear readers. I was in the midst of reporting this interesting but maybe not so revolutionary paper about a geophysical model and suddenly a bunch of other people saw the press release, didn’t bother to read the paper, then went insane and decided that scientists made a huge discovery. That’s not what happened. But, uh, the model is cool.

[Journal of Geophysical Research: Solid Earth]

Source: https://gizmodo.com/lets-all-calm-down-and-make-sense-of-that-antarctic-man-1820268978

Questions:

  1. What are the physical layers of the earth?  Make a simple, clear diagram and label it.  Earth’s layered structure
  2. Why is the Earth’s interior hot?
  3. What is the mantle? arth’s layered structure
  4. What is mantle convection?  mantle convection
  5. How are popular news articles covering this story?
  6. Scientists don’t explain this story the same way that the newspapers do: How are scientists explaining this story? (See this blog post)

Learning Standards

2016 Massachusetts Science and Technology/Engineering Curriculum Framework

8.MS-ESS2-1. Use a model to illustrate that energy from Earth’s interior drives convection that cycles Earth’s crust, leading to melting, crystallization, weathering, and deformation
of large rock formations, including generation of ocean sea floor at ridges,
submergence of ocean sea floor at trenches, mountain building, and active volcanic
chains.

HS-ESS2-3. Use a model based on evidence of Earth’s interior to describe the cycling of matter due to the outward flow of energy from Earth’s interior and gravitational movement of denser materials toward the interior.

HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth’s systems over different time scales result in changes in climate. Analyze and interpret data to explain that long-term changes in Earth’s tilt and orbit result in cycles of
climate change such as Ice Ages.

HS-ESS1-5. Evaluate evidence of the past and current movements of continental and oceanic crust, the theory of plate tectonics, and relative densities of oceanic and continental rocks to explain why continental rocks are generally much older than rocks of the ocean floor.

 

This website is educational. Materials within it are being used in accord with the Fair Use doctrine, as defined by United States law.

§107. Limitations on Exclusive Rights: Fair Use

Notwithstanding the provisions of section 106, the fair use of a copyrighted work, including such use by reproduction in copies or phone records or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use, the factors to be considered shall include:

the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes;
the nature of the copyrighted work;
the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and
the effect of the use upon the potential market for or value of the copyrighted work. (added pub. l 94-553, Title I, 101, Oct 19, 1976, 90 Stat 2546)

Teaching protein translation

We’re teaching how DNA gets turned into mRNA, and then hooks up to tRNA with amino acids, and then forms proteins. Very important yet it’s not easy for everyone. It can be challenging for ELL and SPED students. Solution? Make it tactile: Use a large table as a cell, and pieces on the table to represent organelles and molecules.

It took time to find right graphics – but this was critical. It’s good to reinforce that cells contain many organelles, even if we’re only using a few of them in any particular lesson.

I printed them out on heavy stock paper. (I need to laminate it next time, but this was a trial run.) Cut out all the pieces.

The trick is to have many nucleotides, so they can get practice with multiple combinations. Here we have 27 bases, for 9 codons, making an 8 amino acid peptide (plus one STOP codon.)

Here is the PDF file with the graphics (DNA to mRNA to ribosome to tRNA) This is what it looks like on a table top, when students use them.

DNA protein translation manipulative

DNA protein translation manipulative 2

Learning Standards

2016 Massachusetts Science and Technology/Engineering Curriculum Framework

HS-LS1-1. Construct a model of transcription and translation to explain the roles of DNA and RNA that code for proteins that regulate and carry out essential functions of life.

 

Michelangelo’s Secret Message in the Sistine Chapel

Michelangelo’s Secret Message in the Sistine Chapel: A Juxtaposition of God and the Human Brain

Scientific American, R. Douglas Fields on May 27, 2010

At the age of 17 he began dissecting corpses from the church graveyard. Between the years 1508 and 1512 he painted the ceiling of the Sistine Chapel in Rome. Michelangelo Buonarroti—known by his first name the world over as the singular artistic genius, sculptor and architect—was also an anatomist, a secret he concealed by destroying almost all of his anatomical sketches and notes. Now, 500 years after he drew them, his hidden anatomical illustrations have been found—painted on the ceiling of the Sistine Chapel, cleverly concealed from the eyes of Pope Julius II and countless religious worshipers, historians, and art lovers for centuries—inside the body of God.

Michelangelo Light Darkness First_Day_of_Creation

This is the conclusion of Ian Suk and Rafael Tamargo, in their paper in the May 2010 issue of the scientific journal Neurosurgery. Suk and Tamargo are experts in neuroanatomy at the Johns Hopkins University School of Medicine in Baltimore, Maryland.

In 1990, physician Frank Meshberger published a paper in the Journal of the American Medical Association deciphering Michelangelo’s imagery with the stunning recognition that the depiction in God Creating Adam in the central panel on the ceiling was a perfect anatomical illustration of the human brain in cross section. Meshberger speculates that Michelangelo surrounded God with a shroud representing the human brain to suggest that God was endowing Adam not only with life, but also with supreme human intelligence.

Now in another panel The Separation of Light from Darkness, Suk and Tamargo have found more. Leading up the center of God’s chest and forming his throat, the researchers have found a precise depiction of the human spinal cord and brain stem.

Michelangelo 1

Is the ceiling of the Sistine Chapel a 500 year-old puzzle that is only now beginning to be solved? What was Michelangelo saying by construction the voice box of God out of the brain stem of man? Is it a sacrilege or homage?

It took Michelangelo four years to complete the ceiling of the Sistine Chapel. He proceeded from east to west, starting from the entrance of the Chapel to finish above the altar. The last panel he painted depicts God separating light from darkness. This is where the researchers report that Michelangelo hid the human brain stem, eyes and optic nerve of man inside the figure of God directly above the altar.

Art critics and historians have long puzzled over the odd anatomical irregularities in Michelangelo’s depiction of God’s neck in this panel, and by the discordant lighting in the region. The figures in the fresco are illuminated diagonally from the lower left, but God’s neck, highlighted as if in a spotlight, is illuminated straight-on and slightly from the right.

Michelangelo 2

How does one reconcile such clumsiness by the world’s master of human anatomy and skilled portrayer of light with bungling the image of God above the altar? Suk and Tamargo propose that the hideous goiter-disfigured neck of God is not a mistake, but rather a hidden message. They argue that nowhere else in any of the other figures did Michelangelo foul up his anatomically correct rendering of the human neck.

They show that if one superimposes a detail of God’s odd lumpy neck in the Separation of Light and Darkness on a photograph of the human brain as seen from below, the lines of God’s neck trace precisely the features of the human brain [see images at right].

There is something else odd about this picture. A role of fabric extends up the center of God’s robe in a peculiar manner. The clothing is bunched up here as is seen nowhere else, and the fold clashes with what would be the natural drape of fabric over God’s torso. In fact, they observe, it is the human spinal cord, ascending to the brain stem in God’s neck. At God’s waist, the robe twists again in a peculiar crumpled manner, revealing the optic nerves from two eyes, precisely as Leonardo Da Vinci had shown them in his illustration of 1487. Da Vinci and Michelangelo were contemporaries and acquainted with each other’s work.

The mystery is whether these neuroanatomical features are hidden messages or whether the Sistine Chapel a Rorshach tests upon which anyone can extract an image that is meaningful to themselves. The authors of the paper are, after all, neuroanatomists. The neuroanatomy they see on the ceiling may be nothing more than the man on the moon.
But Michelangelo also depicted other anatomical features elsewhere in the ceiling, according to other scholars; notably the kidney, which was familiar to Michelangelo and was of special interest to him as he suffered from kidney stones.

If the hidden figures are intentional, what do they mean? The authors resist speculation, but a great artist does not merely reproduce an object in a work of art, he or she evokes meaning through symbolism. Is Separation of Light from Darkness an artistic comment on the enduring clash between science and religion?

Recall that this was the age when the monk Copernicus was denounced by the Church for theorizing that the Earth revolved around the sun. It was a period of struggle between scientific observation and the authority of the Church, and a time of intense conflict between Protestants and Catholics.

It is no secret that Michelangelo’s relationship with the Catholic Church became strained. The artist was a simple man, but he grew to detest the opulence and corruption of the Church. In two places in the masterpiece, Michelangelo left self portraits—both of them depicting himself in torture. He gave his own face to Saint Bartholomew’s body martyred by being skinned alive, and to the severed head of Holofernes, who was seduced and beheaded by Judith.

Michelangelo was a devout person, but later in life he developed a belief in Spiritualism, for which he was condemned by Pope Paul IV. The fundamental tenet of Spiritualism is that the path to God can be found not exclusively through the Church, but through direct communication with God. Pope Paul IV interpreted Michelangelo’s Last Judgment, painted on the wall of the Sistine Chapel 20 years after completing the ceiling, as defaming the church by suggesting that Jesus and those around him communicated with God directly without need of Church. He suspended Michelangelo’s pension and had fig leaves painted over the nudes in the fresco. According to the artist’s wishes, Michelangelo’s body is not buried on the grounds of the Vatican, but is instead interred in a tomb in Florence.

Perhaps the meaning in the Sistine Chapel is not of God giving intelligence to Adam, but rather that intelligence and observation and the bodily organ that makes them possible lead without the necessity of Church directly to God. The material is rich for speculation and the new findings will doubtlessly spark endless interpretation. We may never know the truth, but in Separation of Light from Darkness, Michelangelo’s masterpiece combines the worlds of art, religion, science, and faith in a provocative and awe inspiring work of art, which may also be a mirror.

Images from “Concealed Neuroanatomy in Michelangelo’s Separation of Light From Darkness in the Sistine Chapel,” by Ian Suk and Rafael J. Tamargo in Neurosurgery, Vol. 66, No. 5, pp. 851-861.

About the author: R. Douglas Fields, Ph.D., is a neuroscientist and an adjunct professor at the University of Maryland, College Park. He is author of Why We Snap, about the neuroscience of sudden aggression, and The Other Brain, about glia. Fields serves on Scientific American Mind’s board of advisers.

https://blogs.scientificamerican.com/guest-blog/michelangelos-secret-message-in-the-sistine-chapel-a-juxtaposition-of-god-and-the-human-brain/

Related articles

Separation of Light from Darkness. Article on the painting from Wikipedia.

 

Origami membrane protein

All cell membranes have proteins embedded in them. Each protein has its own job.

Students often draw the proteins in the cell membrane them like this:

With more detail we can see that proteins are three-dimensional machines, with movable parts.

Creative Biomart Lipidsome-Based-Membrane-Protein-Production

Adding more detail, we can now see molecules going in and out of a cell. The membrane proteins open or close as needed to let certain molecules in, and other ones out.

Cell membrane lipid bilayer animation

Here, a student in our class build a three dimensional model of a membrane protein. He made one monomer; and then attached several of them to make a polymer.

Monomer Polymer Lego analogy

Instead of attaching eight monomers in a straight line, he’ll form them into a circle:

This becomes a model of a protein that floats in a cell’s membrane,

It can have two shapes, closed or opened, depending on how it’s folded.

It allows certain molecules in or out of a cell, as needed.

protein folding 1

protein folding 2

protein folding 3

protein folding 4

protein folding 5

protein folding 6

protein folding 7

For instructions we may refer to a video from AskABiologist:

Proteins are made of building blocks called amino acids, and have their own special shape. Not only do they look different, but they have different jobs to do inside the cell. Some proteins help move things around in the body, others act like support structures or glue to hold parts of the cell together, and some can help reactions in the cell go faster. The protein we’re making is a channel that sits in the outer cell surface, or membrane, and works like a door that lets certain molecules pass through. Some channels are open all the time while others can be closed depending on signals from the cell or the environment.

Narration by Rebecca Elaine Ryan
Original origami design by Florence Temko

Step-by-step directions

Here’s the video from AskABiologist

Proteins fold into biological machines

Here is a great app that teaches us about protein folding – Protein folding

Individual amino acids have side chains with varying properties of electrical charge. When suspended in water, chains of amino acids can move, bend, and interact with one another along the chain and with the surrounding environment. Forces of electrical attraction and repulsion cause the chain to eventually settle into a conformation that maximizes the molecule’s stability.

Explore the folding of proteins using the free educational simulations and activities below. These scientifically accurate models are great for the classroom, homework assignments, or independent learning. Use them to explore some of the forces involved in the creation of three-dimensional structures in proteins:  1. Where do proteins come from. 2. A closer look at amino acids. 3. The impact of electrical charge. 4. The impact of the surrounding medium.

Protein folding: The Concord Consortium

Learning Standards

Massachusetts Curriculum Frameworks: Biology

8.MS-PS1-1. Develop a model to describe that (a) atoms combine in a multitude of ways to produce pure substances which make up all of the living and nonliving things that we encounter, (b) atoms form molecules and compounds that range in size from two to thousands of atoms, and (c) mixtures are composed of different proportions of pure substances.

HS-LS1-6. Construct an explanation based on evidence that organic molecules are primarily composed of six elements, where carbon, hydrogen, and oxygen atoms may combine with nitrogen, sulfur, and phosphorus to form monomers that can further combine to form large carbon-based macromolecules.

Disciplinary Core Idea Progression Matrix: PS1.A Structure of matter: That matter is composed of atoms and molecules can be used to explain the properties of substances, diversity of materials, how mixtures will interact, states of matter, phase changes, and conservation of matter.