KaiserScience

Home » engineering

Category Archives: engineering

Pascal’s Principle

Pressure applied to an enclosed, incompressible, static fluid is transmitted undiminished to all parts of the fluid.

Hydraulic systems operate according to Pascal’s law.

11.5 Pascal’s Principle

  • Define pressure.
  • State Pascal’s principle.
  • Understand applications of Pascal’s principle.
  • Derive relationships between forces in a hydraulic system.
Pascal's principle hydraulics

image from littlewhitecoats.blogspot.com

.

Learning Standards

tba

 

 

Coal power

Content objective:

What are we learning? Why are we learning this?

content, procedures, skills

Vocabulary objective

Tier II: High frequency words used across content areas. Key to understanding directions, understanding relationships, and for making inferences.

Tier III: Low frequency, domain specific terms

Building on what we already know

What vocabulary & concepts were learned in earlier grades?
Make connections to prior lessons from this year.
This is where we start building from.

How was coal formed?

coalFormation-XL

Types of coal

Lignite

sub-bituminous coal

bituminous coal

anthracite coal

Types of coal Lignite bituminous Anthracite USA

From High School Coal Study Guide, U.S. Dept. of Energy, http://www.energy.gov,

So what is coal really made of?

While you are free to skip this section, it is pretty cool to see what coal is really made of. It is a bunch of different organic molecules.

Recall that coal was made from piles of ancient plants.  Plants are made of cellulose, and that is just made from a bunch of linked sugar molecules.

Check this out – this scar looking cellulose molecule is really just a bunch of sugars linked up!

So under years of heat and pressure, all these cellulose molecules break down and reconnect into other shapes.

As such, coal has way more different shaped molecules than oil.

Think of coal as a bunch of five-sided and six-sided rings of carbon, often hooked together with an O (oxygen) atom.

cellulose cyclic glucose turned to coal

Energy Sources and the Environment

All sorts of shapes are possible; there are probably millions of them. Here is another example.

coal molecule structure Wikipedia

From Wikimedia, Struktura chemiczna węgla kamiennego

How is the energy in coal turned into electrical power?

Burn coal to release heat, and use that heat to create electrical power.

Burning oil is a chemical reaction called combustion.

In physics, power has a very specific meaning. It is the rate that energy is transformed from one form into another form.

_________________________________________________________

Coal fired power station

Coal is pulverized (D)

and burnt in a furnace (C).

The heat energy released is used to heat water into super hot steam which is then used to turn turbines (B).

The turbines drive the generators (A) which produce electricity.

The steam is then condensed and recycled.

The chimney labeled “F”, known as a condensing tower, releases water vapour and is part of the recycling of steam.

The chimney labeled “G” is attached to the furnace and releases carbon dioxide and ash.

Text and GIF above from http://www.dynamicscience. com.au

___________________________________________

Here is another animation (source unknown, found at gifer. com

Coal fired power station Another

____________________________________________

2000px-Coal_fired_power_plant_diagram.svg

Turning coal into natural gas

Burning coal creates a lot of air pollution. Coal gasification turns it into a kind of natural gas that burns more cleanly. Read more: Scienceclarified.com Real life chemistry

Smog – a bad side effect of burning coal

Huge amounts of SO2 get into the atmosphere from power plants burning sulfur-containing coal or oil.

Smog is air pollution that reduces visibility. The term was first used in the early 1900s to describe a mix of smoke and fog. The smoke usually came from burning coal. Smog was common in industrial areas, and remains a familiar sight in cities today.

Today, most of the smog we see is photochemical smog. Photochemical smog is produced when sunlight reacts with nitrogen oxides and at least one volatile organic compound (VOC) in the atmosphere.

Nitrogen oxides come from car exhaust, coal power plants, and factory emissions.

The Great Smog of London, or Great Smog of 1952

Smog London historical

Image found at makeagif

How we partially ended smog in the modern world with EPA regulations.

Smog before and after the EPA

Human-caused atmospheric changes

Coal Ash Is More Radioactive Than Nuclear Waste

How elections are impacted by a 100 million year old coastline

Learning Standards

Massachusetts History and Social Science Curriculum Framework

Grade 6: HISTORY AND GEOGRAPHY Interpret geographic information from a graph or chart and construct a graph or chart that conveys geographic information (e.g., about rainfall, temperature, or population size data)

INDUSTRIAL REVOLUTION AND SOCIAL AND POLITICAL CHANGE IN EUROPE, 1800–1914 WHII.6 Summarize the social and economic impact of the Industrial Revolution… population and urban growth

Benchmarks, American Association for the Advancement of Science

In the 1700s, most manufacturing was still done in homes or small shops, using small, handmade machines that were powered by muscle, wind, or moving water. 10J/E1** (BSL)

In the 1800s, new machinery and steam engines to drive them made it possible to manufacture goods in factories, using fuels as a source of energy. In the factory system, workers, materials, and energy could be brought together efficiently. 10J/M1*

The invention of the steam engine was at the center of the Industrial Revolution. It converted the chemical energy stored in wood and coal into motion energy. The steam engine was widely used to solve the urgent problem of pumping water out of coal mines. As improved by James Watt, Scottish inventor and mechanical engineer, it was soon used to move coal; drive manufacturing machinery; and power locomotives, ships, and even the first automobiles. 10J/M2*

The Industrial Revolution developed in Great Britain because that country made practical use of science, had access by sea to world resources and markets, and had people who were willing to work in factories. 10J/H1*

The Industrial Revolution increased the productivity of each worker, but it also increased child labor and unhealthy working conditions, and it gradually destroyed the craft tradition. The economic imbalances of the Industrial Revolution led to a growing conflict between factory owners and workers and contributed to the main political ideologies of the 20th century. 10J/H2

Today, changes in technology continue to affect patterns of work and bring with them economic and social consequences. 10J/H3*

Protecting New Orleans from rising water levels

New Orleans, Louisiana

This is a placeholder blogpost. The article is to be written

New Orleans canal gates flood control

Map: Google Maps. Photos by Mary Grace McKernan; infographic: by Marc Fusco.

.

New Orleans Lake Pontchartrain Elevation map to Mississippi River

Image by Midnightcomm for Wikipedia, public domain.

.

Apps & Interactive graphics

Louisiana’s Sea Level Is Rising: SeaLevelRise.org

.

Articles

Fortified But Still In Peril, New Orleans Braces for Its Future: In the years after Hurricane Katrina, over 350 miles of levees, flood walls, gates and pumps came to encircle greater New Orleans. Experts say that is not enough.

By John Schwartz and Mark Schleifstein, 2/24/2018

Fortified But Still In Peril, New Orleans Braces for Its Future

After a $14-Billion Upgrade, New Orleans’ Levees Are Sinking. Sea level rise and ground subsidence will render the flood barriers inadequate in just four years. By Thomas Frank, E&E News, Scientific American, 4/11,/2019

After a $14-Billion Upgrade, New Orleans’ Levees Are Sinking. Scientific American

Rising Sea Levels May Limit New Orleans Adaptation Efforts. New Orleans sees that even modern engineering cannot eliminate flooding risk. By Emily Holden, ClimateWire on September 10, 2015. Scientific American.

Rising Sea Levels May Limit New Orleans Adaptation Efforts. Scientific American

Fortified but still in peril, New Orleans braces for its future: Our Drowning Coast. By Mark Schleifstein | Posted February 24, 2018.

Fortified but still in peril, New Orleans braces for its future

Rising sea to displace 500,000 New Orleans area residents, study says; see where they might go. By Tristan Baurick, NOLA.com | The Times-Picayune. 4/20/2017.

A study published this week (April 2017) predicts that sea level rise will push hundreds of thousands of people out of U.S. coastal cities such as New Orleans. It says the population will boom in nearby inland cities such as Austin. The University of Georgia study is considered the first detailed look at how inland cities might be affected by sea level rise. It estimates more than than 500,000 people will flee the seven-parish New Orleans area by 2100 due to sea level rise and the problems that come with it, including frequent flooding and greater exposure to storm surges. That’s more than one third of metro New Orleans’s current population…. Across the United States, the study estimates, 13 million people will be displaced by sea level rise under a scenario in which some efforts are taken to mitigate the impacts of sea level rise. The biggest draw, it predicts, will be Austin, gaining 600,00 to 800,000 people on top of the metro area’s current estimated population of 2.1 million. Other inland cities likely to grow substantially include Orlando, Fla., Atlanta and Phoenix.

Rising sea to displace 500,000 New Orleans area residents, study says. NOLA.com

Migration induced by sea-level rise could reshape the US population landscape
Mathew E. Hauer. Nature Climate Change volume 7, pages 321–325 (2017)

Many sea-level rise (SLR) assessments focus on populations presently inhabiting vulnerable coastal communities, but to date no studies have attempted to model the destinations of these potentially displaced persons. With millions of potential future migrants in heavily populated coastal communities, SLR scholarship focusing solely on coastal communities characterizes SLR as primarily a coastal issue, obscuring the potential impacts in landlocked communities created by SLR-induced displacement. Here I address this issue by merging projected populations at risk of SLR with migration systems simulations to project future destinations of SLR migrants in the United States. I find that unmitigated SLR is expected to reshape the US population distribution, potentially stressing landlocked areas unprepared to accommodate this wave of coastal migrants—even after accounting for potential adaptation. These results provide the first glimpse of how climate change will reshape future population distributions and establish a new foundation for modelling potential migration destinations from climate stressors in an era of global environmental change.

Migration induced by sea-level rise could reshape the US population landscape (Nature, science journal)

 

Catapult and Trebuchet build project

catapult is any one of a number of non-handheld mechanical devices used to throw a projectile a great distance without the aid of an explosive substance—particularly various types of ancient and medieval siege engines.

Catapult and Trebuchet.png

The name is the Latinized form of the Ancient Greek καταπέλτης – katapeltes, from κατά – kata (downwards, into, against) and πάλλω – pallo (to poise or sway a missile before it is thrown.) [from Wikipedia]

Ideas on how to build them at home

KnightForHire: How to build simple catapults

Quotes

Today’s Latin lesson:

“Cum catapultae proscriptae erunt tum soli proscripti catapultas habebunt.”
( “When catapults are outlawed, only outlaws will have catapults.” )

“Catapultam habeo. Nisi pecuniam omnem mihi dabis, ad caput tuum saxum immane mittam”
( “I have a catapult. Give me all your money, or I will fling an enormous rock at your head.” )

If you lived in the Dark Ages, and you were a catapult operator, I bet the most common question people would ask is, ‘Can’t you make it shoot farther?’ No. I’m sorry. That’s as far as it shoots.”
– Jack Handy, Deep Thoughts, Saturday Night Live

Build an onager, ballista or trebuchet.

Grading rubric. The project is worth 100 points.

Timeliness: Late projects lose 5 points per day.

A. Catapults use torsion (energy stored in a twisted rope or other material.) Do not merely use a stretched elastic (e.g. rubber band.)

If you build a trebuchet then you will need to use a pivoting beam and a counterweight.

B. It will have some kind of trigger or switch. (Without such a trigger, you would merely have a large slingshot.)

C. The payload range will be nearly constant (each payload lands within 15% of the other payloads.)

D. It will have adjustable firing: One setting will yield a shorter range (at least 4 feet.), while another setting yields a longer range (at least 8 feet.)

E. The weight limit is 10 pounds.

F. The longest allowable dimensions of height, length and width are 50 centimeters for each.

Scoring

100 points Machine built according to the above characteristics

– 20 points Minimum range is not met.

– 20 points Too large or too heavy.

– 10 points Firing range is not adjustable.

– 10 points Uses a stretched elastic material (e.g. rubber band) as the only source of power. (Not applicable for trebuchets, of course.)

– 10 points No trigger.

– 5 points Payload range is not constant

Catapult animations

Redstone projects.com: Catapult animations

trebuchet gif

.

Mad science

Yup, we’re planning a lesson on real-life mad scientists and their actually-plausible mad science inventions. Because of course.

Mad Science

Nikola Tesla

Tesla and wireless power transmission

 

Project Habbakuk

Project Habbakuk: Britain’s secret attempt to build an ice warship. CNN.

Project Habbakuk: Britain’s Secret Ice “Bergship” Aircraft Carrier Project. 99percentinvisible.org

Project Habakkuk (Wikipedia)

Project Orion

Our SpaceFlight Heritage: Project Orion, a nuclear bomb and rocket – all in one.

Project Orion

Realistic Designs: Atomic Rockets

Project Orion. Medium.com

Extreme Engineering

Extreme Engineering: Tokyo’s Sky City, Transatlantic Tunnel, and the Space Elevator

Articles

The Mad Genius Mystery, Alexander Grothendieck

Learning Standards

2016 Massachusetts Science and Technology/Engineering Curriculum Framework

2016 High School Technology/Engineering

HS-ETS1-1. Analyze a major global challenge to specify a design problem that can be improved. Determine necessary qualitative and quantitative criteria and constraints for solutions, including any requirements set by society.

HS-ETS1-2. Break a complex real-world problem into smaller, more manageable problems that each can be solved using scientific and engineering principles.

HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, aesthetics, and maintenance, as well as social, cultural, and environmental impacts.

HS-ETS1-5(MA). Plan a prototype or design solution using orthographic projections and isometric drawings, using proper scales and proportions.

Next Generation Science Standards: Science & Engineering Practices

● Ask questions that arise from careful observation of phenomena, or unexpected results, to clarify and/or seek additional information.
● Ask questions that arise from examining models or a theory, to clarify and/or seek additional information and relationships.
● Ask questions to clarify and refine a model, an explanation, or an engineering problem.
● Evaluate a question to determine if it is testable and relevant.
● Ask and/or evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of the design

Francis Cabot Lowell and the industrial revolution

Before the 1760s, textile production was a cottage industry using mainly flax and wool. A typical weaving family would own one hand loom, which would be operated by the man with help of a boy; the wife, girls and other women could make sufficient yarn for that loom.

The knowledge of textile production had existed for centuries. India had a textile industry that used cotton, from which it manufactured cotton textiles. When raw cotton was exported to Europe it could be used to make fustian.

Two systems had developed for spinning: the simple wheel, which used an intermittent process and the more refined, Saxony wheel which drove a differential spindle and flyer with a heck that guided the thread onto the bobbin, as a continuous process. This was satisfactory for use on hand looms, but neither of these wheels could produce enough thread for the looms after the invention by John Kay in 1734 of the flying shuttle, which made the loom twice as productive.

Cloth production moved away from the cottage into manufactories. The first moves towards manufactories called mills were made in the spinning sector. The move in the weaving sector was later. By the 1820s, all cotton, wool and worsted was spun in mills; but this yarn went to outworking weavers who continued to work in their own homes. A mill that specialised in weaving fabric was called a weaving shed.

 

This section has been adapted from, Textile manufacture during the British Industrial Revolution, Wikipedia

Francis Cabot Lowell

Samuel Slater had established factories in the 1790s after building textile machinery. Francis Cabot Lowell took it a step further. In 1810, Francis Cabot Lowell visited the textile mills in England. He took note of the machinery in England that was not available in the United States, and he sketched and memorized details.

Francis Cabot Lowell from Hulton Archive, Getty Images

One machine in particular, the power loom, could weave thread into cloth. He took his ideas to the United States and formed the Boston Manufacturing Company in 1812. With the money he made from this company, he built a water-powered mill. Francis Cabot Lowell is credited for building the first factory where raw cotton could be made into cloth under one roof. This process, also known as the “Waltham-Lowell System” reduced the cost of cotton. By putting out cheaper cotton, Lowell’s company quickly became successful. After Lowell brought the power loom to the United States, the new textile industry boomed. The majority of businesses in the United States by 1832 were in the textile industry.

Lowell also found a specific workforce for his textile mills. He employed single girls, daughters of New England farm families, also known as The Lowell Girls. Many women were eager to work to show their independence. Lowell found this convenient because he could pay women less wages than he would have to pay men. Women also worked more efficiently than men did, and were more skilled when it came to cotton production. This way, he got his work done efficiently, with the best results, and it cost him less. The success of the Lowell mills symbolizes the success and technological advancement of the Industrial Revolution.

– This has been excerpted from https://firstindustrialrevolution.weebly.com/the-textile-industry.html

Learning Standards

Massachusetts Science and Technology/Engineering Curriculum Framework

HS-ETS4-5(MA). Explain how a machine converts energy, through mechanical means, to do work. Collect and analyze data to determine the efficiency of simple and complex machines.

Massachusetts History and Social Science Curriculum Framework

Grade 6: HISTORY AND GEOGRAPHY Interpret geographic information from a graph or chart and construct a graph or chart that conveys geographic information (e.g., about rainfall, temperature, or population size data)

INDUSTRIAL REVOLUTION AND SOCIAL AND POLITICAL CHANGE IN EUROPE, 1800–1914 WHII.6 Summarize the social and economic impact of the Industrial Revolution… population and urban growth

Benchmarks, American Association for the Advancement of Science

In the 1700s, most manufacturing was still done in homes or small shops, using small, handmade machines that were powered by muscle, wind, or moving water. 10J/E1** (BSL)

In the 1800s, new machinery and steam engines to drive them made it possible to manufacture goods in factories, using fuels as a source of energy. In the factory system, workers, materials, and energy could be brought together efficiently. 10J/M1*

The invention of the steam engine was at the center of the Industrial Revolution. It converted the chemical energy stored in wood and coal into motion energy. The steam engine was widely used to solve the urgent problem of pumping water out of coal mines. As improved by James Watt, Scottish inventor and mechanical engineer, it was soon used to move coal; drive manufacturing machinery; and power locomotives, ships, and even the first automobiles. 10J/M2*

The Industrial Revolution developed in Great Britain because that country made practical use of science, had access by sea to world resources and markets, and had people who were willing to work in factories. 10J/H1*

The Industrial Revolution increased the productivity of each worker, but it also increased child labor and unhealthy working conditions, and it gradually destroyed the craft tradition. The economic imbalances of the Industrial Revolution led to a growing conflict between factory owners and workers and contributed to the main political ideologies of the 20th century. 10J/H2

Today, changes in technology continue to affect patterns of work and bring with them economic and social consequences. 10J/H3*

Cell phone chemistry

Chemistry is everywhere – even in your phones

Article 1: “Digging for rare earths: The mines where iPhones are born. How are these unusual minerals extracted from the ground and why is that process an environmental risk? CNET’s Jay Greene explains.” – from CNet 9/26/12

Digging for rare earths: The mines where iPhones are born

Article 2: Pay dirt: Why rare-earth metals matter to tech (FAQ) It was once an obscure topic only for geologists. But China’s control over rare earth elements used in green- and high-tech equipment is causing alarm as the nation cuts exports.

Pay dirt: Why rare-earth metals matter to tech

Here is the full PDf handout:  Periodic table of iPhones (Full PDF handout)

Article 3:

Does cell phone use cause cancer?

Article 4:

Measuring data with smartphone apps

Learning Standards

Massachusetts

ETS3. Technological Systems
7.MS-ETS3-2(MA). Compare the benefits and drawbacks of different communication systems.

7.MS-ETS3-4(MA). Show how the components of a structural system work together to serve a structural function. Provide examples of physical structures and relate their design to their intended use.

College Board Standards for College Success: Science

Objective C.2.1 Periodic Table
Students understand that the periodic table is an organizational tool that can be used for the prediction and classification of the trends and properties of elements.

C-PE.2.1.1 Predict, based on its position in the periodic table, the properties of a given main group element. Properties include appearance, electronegativity, type of bond formed, and ionic charge. Make a claim about the type (metal, nonmetal, metalloid) of the given element. Give examples of other elements that would have similar properties, and explain why they would have similar properties.

Students apply, as well as engage and reason with, the following concepts in the performance expectations:

Properties of an element can be predicted based on its placement in the periodic table. Groups of elements exhibit similar properties with predictable variations; rows of elements have predictable trends.

Elements are often classified as metals, nonmetals and metalloids

AAAS Benchmarks

All matter is made up of atoms, which are far too small to see directly through a microscope. 4D/M1a
The atoms of any element are like other atoms of the same element, but are different from the atoms of other elements. 4D/M1b*

There are groups of elements that have similar properties, including highly reactive metals, less-reactive metals, highly reactive nonmetals (such as chlorine, fluorine, and oxygen), and some almost completely nonreactive gases (such as helium and neon). 4D/M6a

CSTA K-12 Computer Science Standards

CD.L2-07 Describe what distinguishes humans from machines, focusing on human intelligence
versus machine intelligence and ways we can communicate.
CD.L2-08 Describe ways in which computers use models of intelligent behavior (e.g., robot motion,
speech and language understanding, and computer vision).
CD.L3A-01 Describe the unique features of computers embedded in mobile devices and vehicles
(e.g., cell phones, automobiles, airplanes).
CD.L3A-10 Describe the major applications of artificial intelligence and robotics.
Common Core ELA. WHST.6-8.1 Write arguments focused on discipline-specific content.