KaiserScience

Home » history

Category Archives: history

Advertisements

Ulugh Beg

There’s a new docudrama coming out about the life of Ulugh Beg, a medieval astronomer who made Samarkand, now Uzbekistan, a thriving center of culture and science in the 15th century.

Intro adapted from Wikipedia

Mīrzā Muhammad Tāraghay bin Shāhrukh (Chagatayمیرزا محمد طارق بن شاہ رخPersianمیرزا محمد تراغای بن شاہ رخ‎), better known as Ulugh Beg (الغ‌ بیگ‬) (1394- 1449), was a Timurid ruler as well as an astronomermathematician and sultan. His commonly known name is a moniker, translated as “Great Ruler”

Ulugh Beg was notable for his work in astronomy-related mathematics, such as trigonometry and spherical geometry. He built the great Ulugh Beg Observatory in Samarkand between 1424 and 1429. It is considered to have been one of the finest observatories in the Islamic world at the time. He built the Ulugh Beg Madrasah (1417–1420) in Samarkand and Bukhara, transforming the cities into cultural centers of learning in Central Asia. He ruled Uzbekistan, TajikistanTurkmenistanKyrgyzstan, southern Kazakhstan and most of Afghanistan from 1411 to 1449.

Ulugh Beg Astronomer Samarkand Uzbekistan

The following is from Gizmodo, The Trailer for The Man Who Unlocked the Universe Is a Gorgeous Mixture of Science and Action, by George Dvorsky

A full 150 years before Galileo gazed at the heavens with his telescope, Ulugh Beg (1394-1449) was building some of the largest astronomical instruments on Earth. Incredibly, he used his observatory to map the stars and create charts that are still considered highly accurate, even by today’s standards. Beg managed to measure the duration of the year to within 25 seconds of the actual figure, and he even correctly calculated the Earth’s axial tilt at 23.52 degrees. In addition to astronomy, he was a capable mathematician and biologist. He was also a Timurid ruler, transforming the cities of Samarkand and Bukhara into vibrant cultural centers.

A new 38-minute docudrama, titled Ulugh Beg: The Man Who Unlocked the Universe and directed by Bakhodir Yuldashev (Shima, Angel of Death), chronicles the life of the little-known scientist, from his birth as a prince through to his unconventional childhood and eduction, and ending with his untimely death.

Actor Armand Assante (Gotti, American Gangster) portrays Beg, and Vincent Cassel (Black Swan, Shrek) provides the narration. It features some neat CGI, live-action re-enactments of historical events, and interviews with academics and astronauts.

The film will be available for rent or purchase on Amazon starting Friday, June 22.

Advertisements

Stone walls

Walk into a patch of forest in New England, and chances are you will—almost literally—stumble across a stone wall. According to Robert Thorson, a landscape geologist at University of Connecticut, these walls are “damn near everywhere” in the forests of rural New England.

Jeanna Bryner, in Livescience, writes about the rediscovery of the lost archaeological landscape of New England.

Leaf-off (left) and Leaf-on (right) aerial photographs with a modern road superimposed through the northeast corner of the image for reference .

Aerial New England forest optical stone walls

These stone walls and other archaeological features could not be seen with traditional aerial photographs shown here. This figure illustrates the advantage of LiDAR data with a point spacing of 1 meter or better over traditional map views of the landscape for archaeological purposes.

Examinations of airborne scans, using light detection and ranging (LiDAR), of three New England towns have revealed networks of old stone walls, building foundations, old roads, dams and other features, many of which long were forgotten. Here, stone walls are yellow, abandoned roads are red, and building foundations are outlined by green squares.

Aerial New England forest LIDAR stone walls

LiDAR is not only a powerful tool on its own; it can also be used in conjunction with the many types of historical documents available to those performing research in this geographic area,” Johnson and Ouimet write in the Journal of Archaeological Science.

As an example, this 1934 aerial photograph taken of an area in Preston, Conn., shows a farmstead — cleared fields, forest, stone walls or fences, a house, a barn and other outbuildings, and a road running through the farm.

Aerial forest Connecticut stone walls

Now compare with this aerial image from 2012.

Aerial forest Connecticut stone walls 2012

from Livescience, Images: ‘Lost’ New England Archaeology Sites Revealed in LiDAR Photos, 1/16/14

==================

New England Is Crisscrossed With Thousands of Miles of Stone Walls

That’s enough to circle the globe—four times.

By Anna Kusmer 5/4/18

Walk into a patch of forest in New England, and chances are you will—almost literally—stumble across a stone wall. Thigh-high, perhaps, it is cobbled together with stones of various shapes and sizes, with splotches of lichen and spongy moss instead of mortar. Most of the stones are what are called “two-handers”—light enough to lift, but not with just one hand. The wall winds down a hill and out of sight. According to Robert Thorson, a landscape geologist at University of Connecticut, these walls are “damn near everywhere” in the forests of rural New England.

He estimates that there are more than 100,000 miles of old, disused stone walls out there, or enough to circle the globe four times.

Who would build a stone wall, let alone hundreds of thousands of miles of them, in the middle of the forest? No one. The walls weren’t built in the forest but in and around farms. By the middle of the 19th century, New England was over 70 percent deforested by settlers, a rolling landscape of smallholdings as far as the eye could see. But by the end of the century, industrialization and large-scale farms led to thousands of fields being abandoned, to begin a slow process of reforestation.

“New England had great pastures,” says Thorson. “It was a beef-butter-bacon economy.”

As farmers cleared those New England forests, they found rocks—lots and lots of them. The glaciers that receded at the end of the last Ice Age left behind millions of tons of stone in a range of sizes. New England soils remain notoriously stony today.

When life gives you stones? Build a wall. Farmers pulled these plow-impeding stones from their fields and piled them on the edges. “The farmer’s main interest was his fields,” says Thorson. “The walls are simply a disposal pile. It was routine farm work.” This process was replicated at thousands of farms across the region—a collective act of labor on a glacial scale.

The supply of stone seemed endless. A field would be cleared in the autumn, and there would be a whole new crop of stones in the spring. This is due to a process known as “frost heave.” As deforested soils freeze and thaw, stones shift and migrate to the surface. “People in the Northeast thought that the devil had put them there,” says Susan Allport, author of the book Sermons in Stone: The Stone Walls of New England and New York. “They just kept coming.”

Wall-building peaked in the mid-1800s when, Thorson estimates, there were around 240,000 miles of them in New England. That amounts to roughly 400 million tons of stone, or enough to build the Great Pyramid of Giza—more than 60 times over.

No one dedicates more time to thinking about these walls than Thorson, who has written a children’s book, a field guide, and countless articles about them since he first moved to New England in 1984. Thorson, bald and bearded, a mossy stone himself, is a landscape geologist, and he distinctly remembers his first walks in the New England woods—and coming across one stone wall after another. His mind was full of questions about what they were and who built them, “it was a phenomenon that was extraordinary,” he says. “One thing led to another, and I got obsessed on the topic”.

Thorson started the Stone Wall Initiative in 2002, aimed at educating the public about this distinctive feature of their forests, in addition to conserving the walls and studying how they impact the landscape around them. Thorson has built a reputation as the ultimate expert on this phenomenon. “You know how a natural history museum would have a person who identifies stuff for you? I’m kind of that guy for stone walls,” he says.

Every year he takes his students to a maple-beech forest stand in Storrs, Connecticut, which he calls “The Glen,” to look at a classic farmstead stone wall. This wall is thigh-high, and mostly built of gneiss and schist, metamorphic rocks common in the valley flanks of central New England. With Thorson’s help, one begins to see a little structure in how the stones were stacked—in messy tiers, by a farmer who added one load at a time.

Thorson may be particularly obsessed with the walls, but he’s not alone in the interest. He is constantly invited to speak at garden clubs, historical societies, public libraries, and more. “The interest doesn’t die down,” he says. “Twenty years later, it’s still going on.”

His field guide, Exploring Stone Walls, is a directory of some of the most unusual, interesting, or distinctive walls in the region. The tallest example is a mortared sea wall beneath the Cliff Walk in Newport, Rhode Island, measuring over 100 feet. The oldest wall, in Popham Point, Maine, dates to 1607. Thorson’s favorite historically significant wall is at the Old Manse, a historic home in Concord, Massachusetts. It provided cover for minutemen firing on the British during the Revolutionary War. Thorson also highlights Robert Frost’s “Mending Wall,” located on his farm in Derry, New Hampshire, the inspiration for the famous line, “Good fences make good neighbors.”

Thorson knows about as much as one can know about the world-wonder- scale web of walls across the Northeast, but there remains much to learn, particularly in terms of what they mean for ecosystems, such as their role as both habitat and impediment to wildlife, and their effect on erosion and sedimentation. “It sounds silly,” he says, “but we almost know nothing about them.”

Geographer and landscape archaeologist Katharine Johnson earned her doctorate mapping stone walls from above, using lidar (light detection and ranging) technology. Lidar is similar to radar, only instead of using radio waves to detect objects, it uses light. Laser pulses—thousands per second—are emitted from a specially equipped plane. There are so many of these pulses, that some are able to hit the small spaces between leaves and penetrate all the way to the forest floor, even through thick tree cover. Johnson’s lidar images reveal the exent of those crisscrossing stone walls in a way nothing else can.

Her research shows that, stripped of the region’s resurgent forests, the walls provide a snapshot of 19th-century history—a map of what land was cleared and farmed at the time. Combined with other data on the forests themselves, this can help specialists model historic forest cover and, in turn, help ecologists understand how forests grow back after they have been disturbed or cleared entirely. The walls can hold the key to New England’s social history, including settlement patterns and farming styles. They provide a static backdrop against which change can be measured.

“Stone walls are the most important artifacts in rural New England,” Thorson says. “They’re a visceral connection to the past. They are just as surely a remnant of a former civilization as a ruin in the Amazon rain forest.”

Each of the millions of stones that make up New England stone walls was held by a person, usually a subsistence farmer, or perhaps a hired Native American or a slave. What remains is a trace of countless individual acts etched on the landscape. “Those labors,” says Allport, “hundreds of years later, they endure.”

source atlasobscura.com/articles/new-england-stone-walls

Related references

https://www.livescience.com/42638-lost-new-england-archaeology-lidar-photos.html

https://news.nationalgeographic.com/news/2014/01/140103-new-england-archaeology-lidar-science/

Scientific articles

Rediscovering the lost archaeological landscape of southern New England using airborne light detection and ranging (LiDAR), Katharine M.Johnson and William B.Ouimet, Journal of Archaeological Science, Volume 43, March 2014, Pages 9-20

This website is educational. Materials within it are being used in accord with the Fair Use doctrine, as defined by United States law.

§107. Limitations on Exclusive Rights: Fair Use.  Notwithstanding the provisions of section 106, the fair use of a copyrighted work, including such use by reproduction in copies or phone records or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use, the factors to be considered shall include: the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes; the nature of the copyrighted work; the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and the effect of the use upon the potential market for or value of the copyrighted work. (added pub. l 94-553, Title I, 101, Oct 19, 1976, 90 Stat 2546)
___________________________________

Learning Standards

Massachusetts History and Social Science Curriculum Framework

HISTORY AND GEOGRAPHY
1. Use map and globe skills learned in prekindergarten to grade five to interpret different
kinds of projections, as well as topographic, landform, political, population, and climate
maps. (G)
2. Use geographic terms correctly, such as delta, glacier, location, settlement, region,
natural resource, human resource, mountain, hill, plain, plateau, river, island, isthmus,
peninsula, erosion, climate, drought, monsoon, hurricane, ocean and wind currents,
tropics, rain forest, tundra, desert, continent, region, country, nation, and urbanization.
(G)
3. Interpret geographic information from a graph or chart and construct a graph or chart
that conveys geographic information (e.g., about rainfall, temperature, or population
size data). (G)

Lectures on the history of physics

Galileo and Einstein: Lectures on the history of physics

Michael Fowler – University of Virginia Physics

 

 

Binnacle

Our school is right by Boston Harbor – learning about the sea is second nature to many of our staff. So we love to tie maritime history and science into our curriculum.

Binnacle maritime

Photo by RK

As you enter our school, you pass by a binnacle – what was it used for?

A binnacle is a waist-high case, found on the deck of a ship, that holds the compass.

It is mounted in gimbals to keep it level while the ship pitched and rolled.

It also has a mechanism to compensate for errors in detecting the Earth’s magnetic field.

Every ship’s captain would use one, for navigating in and out of Boston Harbor, and around the world.

 

Here we see Boston Harbor – now let’s get in to how the binnacle works!

Boston Harbor Islands map

This map is from mass.gov/eea/images/dcr

 

Why did we need to develop the binnacle?

Excerpted from Magnetic Deviation: Comprehension, Compensation and Computation by Ron Doerfler  

Today, radio navigational systems such as LORAN and GPS, and inertial navigation systems with ring and fiber-optic gyros, gyrocompasses and the like have reduced the use of a ship’s compass to worst-case scenarios. But this triumph of mathematics and physics over the mysteries of magnetic deviation, entered into at a time when magnetic forces were barely understood and set against the backdrop of hundreds of shipwrecks and thousands of lost lives, is an enriching chapter in the history of science.

The Sources of Compass Error

Ron Doerfler writes:

Compasses on ships fail to point to true (geographic) north due to two factors:

Magnetic variation (or magnetic declination) – the angle between magnetic north and geographic north due to the local direction of the Earth’s magnetic field, and

Magnetic deviation – the angle between the compass needle and magnetic north due to the presence of iron within the ship itself.

The algebraic sum of the magnetic variation and the magnetic deviation is known as the compass error. It is a very important thing to know.

Magnetic Variation

Magnetic variation has been known from voyages since the early 1400s at least. Certainly Columbus was distressed as he crossed the Atlantic to find that magnetic north and true north (from celestial sightings) drifted significantly…

We now know that the locations of the Earth’s magnetic poles are not coincident with the geographic poles—not even close, really—and they are always wandering around.

magnetic north pole deviation

Image from commons.wikimedia.org, Magnetic_North_Pole_Positions. Red circles mark magnetic north pole positions as determined by direct observation, blue circles mark positions modelled using the GUFM model (1590–1980) and the IGRF model (1980–2010) in 2 year increments.

 

What’s the difference between where a compass needle points (magnetic north) and the geographic north pole? This is called the declination  It’s smallest near the equator, but generally gets large as one moves towards the poles.

On this map, the green arrows – the direction from the compass – point towards the magnetic north. The red arrows point towards the geographical north pole.

Notice how the left location (in Pacific ocean) shows the compass point a bit east of where we’d hope it would point; in the right location (in Atlantic Ocean) it shows the compass point a bit west of where we’d hope it points.

There’s also a special line where the magnetic north and geographic north point in the same direction.

Magnetic Declination

Image from Drillingformulas.com by Rachain J i

 

Here we can see how many degrees of deviation there are – the # of degrees between where the compass points, and where the north pole is. But – wait for it – the image is changing? The magnetic fields are significantly changing every year!

Estimated declination contours by year

from USGS.gov, faqs, what is declination

 

Magnetic Deviation

Ron Doerfler writes

There is an additional effect on the compass needle that took much longer to appreciate and even longer to understand. This magnetic deviation is due to the iron in a ship…

The first notice in print of this effect was by Joao de Castro of Portugal in 1538, in which he identified “the proximity of artillery pieces, anchors and other iron” as the source.

As better compass designs appeared, a difference in compass readings with their placement on the same ship became more apparent. Captains John Smith and James Cook warned about iron nails in the compass box or iron in steerage, and on Cook’s second circumnavigation William Wales found that changes in the ship’s course changed their measurements of magnetic variation by as much as 7°.

Here we see a modern naval vessel, with it’s own magnetic field. As a metal ship moves through Earth’s magnetic field, an electric current is produced within all that metal – and that current produces it’s own magnetic field. This field can affect the ship’s compass. That’s why a binnacle is designed to be adjustable, to compensate for this field. – RK

Degaussing magnetic field ship

image from slideplayer.com/slide/1632522/

 

Ron Doerfler writes

Captain Matthew Flinders (1774-1815) spent years in the very early 1800s on voyages to investigate these effects…. [he] eventually discovered that an iron bar placed vertically near the compass helped overcome the magnetic deviation. This Flinder’s bar is still used today in ships’ binnacles.

 

Apps & Interactives

NOAA Historical Magnetic Declination

Activities

Hands-on Activity: Nautical Navigation. Teachengineering.org

https://oceanservice.noaa.gov/education/lessons/plot_course.html

https://asa.com/certifications/asa-105-coastal-navigation/

 

Educational opportunities and museums

http://www.capecodmaritimemuseum.org/education/

https://timeandnavigation.si.edu/navigating-at-sea/longitude-problem/solving-longitude-problem/chronometer

http://abycinc.org/?page=standards

Important components

Quadrantal spheres (spherical quadrantal correctors)

Hood, over the compass bowl

flinders bar (vertical, soft iron corrector)

Learning Standards

Ocean Literacy Scope and Sequence for Grades K-12
6. The ocean and humans are inextricably interconnected: From the ocean we get foods, medicines, and mineral and energy resources. In addition, it provides jobs, supports our nation’s economy, serves as a highway for transportation of goods and people, and plays a role in national security.

Massachusetts 2016 Science and Technology/Engineering (STE) Standards
7.MS-PS2-5. Use scientific evidence to argue that fields exist between objects with mass, between magnetic objects, and between electrically charged objects that exert force on each other even though the objects are not in contact.

HS-PS2-1. Analyze data to support the claim that Newton’s second law of motion is a mathematical model describing change in motion (the acceleration) of objects when acted on by a net force….{forces can include magnetic forces}

HS-PS3-5. Develop and use a model of magnetic or electric fields to illustrate the forces and changes in energy between two magnetically or electrically charged objects changing relative position in a magnetic or electric field, respectively.

History standards

National Standards for History Basic Edition, 1996
5-12 Identify major technological developments in shipbuilding, navigation, and naval warfare and trace the cultural origins of various innovations.

Massachusetts History and Social Science Curriculum Framework
The Political, Intellectual and Economic Growth of the Colonies. Explain the importance of maritime commerce in the development of the economy of colonial Massachusetts, using historical societies and museums as needed.

National Curriculum Standards for Social Studies: A Framework for Teaching, Learning, and Assessment, National Council for the Social Studies, 2010.

 

Americapox

DNA evidence offers proof of North American native population decline due to arrival of Europeans

by Bob Yirka, Phys.org

Most history books report that Native American populations in North America declined significantly after European colonizers appeared, subsequent to the “discovery” of the new world by Christopher Columbus in 1492, reducing their numbers by half or more in some cases. Most attribute this decline in population to the introduction of new diseases, primarily smallpox and warfare.

To back up such claims, historians have relied on archaeological evidence and written documents by new world settlers. Up to now however, no physical evidence has been available to nail down specifics regarding population declines, such as when they actually occurred and what caused it to occur. Now however, three researchers with various backgrounds in anthropological and genome sciences have banded together to undertake a study based on mitochondrial DNA evidence, and have found, as they report in their study published in the Proceedings of the National Academy of Sciences, that native populations in North America did indeed decline by roughly fifty percent, some five hundred years ago.

What’s perhaps most interesting in the study, is the implication that the sudden drop in population appeared to occur almost right after the arrival of Europeans, which means before settlement began. This means that the decline would have come about almost exclusively as a result of disease sweeping naturally through native communities, rather than from warfare, or mass slaughter as some have suggested and that stories of settlers using smallpox as a weapon may be exaggerated.

Also of interest is that the researchers found that the native population peaked some 5,000 years ago, and held steady, or even declined slightly, until the arrival of Europeans, and that the population decline that occurred was transient, meaning that it gradually rebounded as those Native Americans that survived the initial wave of smallpox passed on their hearty genes to the next generation.

The results of this research also seem to settle the argument of whether the massive loss of life due to disease was regional, as some historians have argued, or widespread as others have claimed; siding firmly with the latter.

In studying the DNA, of both pre-European arrival native population samples and that of their ancestors alive today, the researchers noted that those alive today are more genetically similar to one another than were their ancestors, which suggests a population decline and then resurgence, and that is how, by backtracking, they came to conclude that the decline occurred half a century ago. The authors are quick to point out however that the margin of error in their work does allow for the possibility that the population decline occurred somewhat later than their results showed and note that further research will need to be done to create a more precise timeline of events.

Native Americans experienced a strong population bottleneck coincident with European contact, Brendan D. O’Fallona and Lars Fehren-Schmitz

PNAS, Published online before print December 5, 2011, doi: 10.1073/pnas.1112563108

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

Americapox: The Missing Plague

By CGP Grey, an an educational YouTuber. He produces explanatory videos on science, politics, geography, economics, and history. This is a transcript of his video Americapox: The Missing Plague, www.cgpgrey.com/blog/americapox

Between the first modern Europeans arriving in 1492 and the Victorian age, the indigenous population of the new world [native American Indians] dropped by at least 90%.

Native_American_Population Plague

The cause?

Not the conquistadores and company — they killed lots of people but their death count is nothing compared to what they brought with them: small pox, typhus, tuberculosis, influenza, bubonic plague, cholera, mumps, measles and more leapt from those first explores to the costal tribes, then onward the microscopic invaders spread through a hemisphere of people with no defenses against them. Tens of millions died.

These germs decided the fate of these battles long before the fighting started.

Now ask yourself: why didn’t Europeans get sick?

If new-worlders were vulnerable to old-world diseases, then surely old-worlders would be vulnerable to new world diseases.

Yet, there was no Americapox spreading eastward infecting Europe and cutting the population from 90 million to 9. Had Americapox existed it would have rather dampened European ability for transatlantic expansion.

To answer why this didn’t happen: we need first to distinguish regular diseases — like the common cold — from what we’ll call plagues.

1) Spread quickly between people.

Sneezes spread plages faster than handshakes which are faster than… closeness. Plagues use more of this than this.

2) They kill you quickly or you become immune.

Catch a plague and your dead within seven to thirty days. Survive and you’ll never get it again. Your body has learned to fight it, you might still carry it — the plague lives in you, you can still spread it, but it can’t hurt you.

The surface answer to this question isn’t that Europeans had better immune systems to fight off new world plages — it’s that new world didn’t have plagues for them to catch. They had regular diseases but there was no Americapox to carry.

These are history’s biggest killers, and they all come from the old world.

But why?

Let’s dig deeper, and talk Cholera, a plague that spreads if your civilization does a bad job of separating drinking water from pooping water. London was terrible at this making it the cholera capital of the world. Cholera can rip through dense neighborhoods killing swaths of the population, before moving onward. But that’s the key: it has to move on.

In a small, isolated group, a plague like cholera cannot survive — it kills all available victims, leaving only the immune and then theres nowhere to go — it’s a fire that burns through its fuel.

But a city — shining city on the hill — to which rural migrants flock, where hundreds of babies are born a day: this is sanctuary for the fire of plague; fresh kindling comes to it. The plague flares and smolders and flares and smolders again — impossible to extinguish.

Historically in city borders plagues killed faster than people could breed. Cities grew because more people moved to them than died inside of them. Cities only started growing from their own population in the 1900s when medicine finally left its leaches and bloodletting phase and entered its soap and soup phase — giving humans some tools to slow death.

But before that a city was an unintentional playground for plages and a grim machine to sort the immune from the rest.

So the deeper, answer is that The New World didn’t have plagues because the new world didn’t have big, dense, terribly sanitized deeply interconnected cities for plages to thrive.

OK, but The New World wasn’t completely barren of cities. And tribes weren’t completely isolated, otherwise the newly-arrived smallpox in the 1400s couldn’t have spread.

Cities are only part of the puzzle: they’re required for plages, but cities don’t make the germs that start the plagues — those germs come from the missing piece.

Now, most germs don’t want to kill you for the same reason you don’t want to burn down your house: germs live in you. Chromic diseases like leprosy are terrible because they’re very good at not killing you.

Plague lethality is an accident, a misunderstanding, because the germs that cause them don’t know they’re in humans, they’re germs that think they’re in this.

Plagues come from animals.

Whooping cough comes from pigs, and does flu as well as from birds. Our friend the cow alone is responsible for measles, tuberculosis, and smallpox.

For the cow these diseases are no big deal — like colds for us. But when cow germs get in humans thing things they do to make the cow a little sick, makes humans very sick. Deadly sick.

Germs jumping species like this is extraordinarily rare. That’s why generations of humans can spend time around animals just fine. Being the patient zero of a new animal-to-human plague is winning a terrible lottery.

But a colonial-age city raises the odds: there used to be animals everywhere, horses, herds of livestock in the streets, open slaughterhouses, meat markets pre-refrigeration, and a river of literal human and animal excrement running through it all.

A more perfect environment for diseases to jump species could hardly be imagined.

So the deeper answer is that plagues come from animals, but so rarely you have to raise the odds and with many chances for infection and give the new-born plague a fertile environment to grow. The old world had the necessary pieces in abundance.

But, why was a city like London filled with sheep and pigs and cows and Tenochtitlan wasn’t?

This brings us to the final level. (For this video anyway)

Some animals can be put to human use — this is what domestication means, animals you can breed, not just hunt.

Forget a the moment the modern world: go back to 10,000BC when tribes of humans reached just about everywhere. If you were in one of these tribes what local animals could you capture, alive, and successfully pen to breed?

Maybe you’re in North Dakota and thinking about catching a Buffalo: an unpredictable, violent tank on hooves, that can outrun you across the planes, leap over your head head and travels in herds thousands strong.

Oh, and you have no horses to help you — because there are no horses on the continent. Horses live here — and won’t be brought over until, too late.

It’s just you, a couple buddies, and stone-based tools. American Indians didn’t fail to domesticate buffalo because they couldn’t figure it out. They failed because it’s a buffalo. No one could do it — buffalo would have been amazing creature to put to human work back in BC, but it’s not going to happen — humans have only barely domesticated buffalo with all our modern tools.

The New World didn’t have good animal candidates for domestication. Almost everything big enough to be useful is also was to too dangerous, or too agile.

Meanwhile the fertile crescent to central Europe had: cows and and pigs and sheep and goats, easy pests animals comparatively begging to be domesticated.

A wild boar is something to contend with if you only have stone tools but it’s possible to catch and pen and bread and feed to eat — because pigs can’t leap to the sky or crush all resistance beneath their hooves.

In The New World the only native domestication contestant was: llamas. They’re better than nothing, which is probably why the biggest cities existed in South America — but they’re no cow. Ever try to manage a heard of llamas in the mountains of Peru? Yeah, you can do it, but it’s not fun. Nothing but drama, these llamas.

These might seem, cherry-picked examples, because aren’t there hundreds of thousands of species of animals? Yes, but when you’re stuck at the bottom of the tech tree almost none of them can be domesticated. From the dawn of man until this fateful meeting humans domesticated maybe a baker’s dozen of unique species the world over, and even to get that high a number you need to stretch it to include honeybees and silkworms. Nice to have, but you can’t build a civilization on a foundation of honey alone.

These early tribes weren’t smarter, or better at domestication. The old world had more valuable and easy animals. With dogs, herding sheep and cattle is easier. Now humans have a buddy to keep an eye on the clothing factory, and the milk and cheeseburger machine, and the plow-puller. Now farming is easier, which means there’s more benefit to staying put, which means more domestication, which means more food which means more people and more density and oh look where we’re going. Citiesville, population lots, bring your animals, plagues welcome.

That is the full answer: The lack of new world animals to domesticate, limited not only exposure to germs sources but also limited food production, which limited population growth, which limited cities, which made plagues in The New World an almost impossibility. In the old, exactly the reverse. And thus a continent full of plague and a continent devoid of it.

So when ships landed in the new world there was no Americapox to bring back.

The game of civilization has nothing to do with the players, and everything to do with the map. Access to domesticated animals in numbers and diversity, is the key resource to bootstrapping a complex society from nothing — and that complexity brings with it, unintentionally, a passive biological weaponry devastating to outsiders.

Start the game again but move the domesticable animals across the sea and history’s arrow of disease and death flows in the opposite direction.

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

Don’t Blame Columbus for All the Indians’ Ills

By JOHN NOBLE WILFORD, OCT. 29, 2002, The New York Times

Europeans first came to the Western Hemisphere armed with guns, the cross and, unknowingly, pathogens. Against the alien agents of disease, the indigenous people never had a chance. Their immune systems were unprepared to fight smallpox and measles, malaria and yellow fever.

The epidemics that resulted have been well documented. What had not been clearly recognized until now, though, is that the general health of Native Americans had apparently been deteriorating for centuries before 1492.

That is the conclusion of a team of anthropologists, economists and paleopathologists who have completed a wide-ranging study of the health of people living in the Western Hemisphere in the last 7,000 years.

The researchers, whose work is regarded as the most comprehensive yet, say their findings in no way diminish the dreadful impact Old World diseases had on the people of the New World. But it suggests that the New World was hardly a healthful Eden.

More than 12,500 skeletons from 65 sites in North and South America — slightly more than half of them from pre-Columbians — were analyzed for evidence of infections, malnutrition and other health problems in various social and geographical settings.

The researchers used standardized criteria to rate the incidence and degree of these health factors by time and geography. Some trends leapt out from the resulting index. The healthiest sites for Native Americans were typically the oldest sites, predating Columbus by more than 1,000 years. Then came a marked decline.

”Our research shows that health was on a downward trajectory long before Columbus arrived,” Dr. Richard H. Steckel and Dr. Jerome C. Rose, study leaders, wrote in ”The Backbone of History: Health and Nutrition in the Western Hemisphere,” a book they edited. It was published in August.

Dr. Steckel, an economist and anthropologist at Ohio State University, and Dr. Rose, an anthropologist at the University of Arkansas, stressed in interviews that their findings in no way mitigated the responsibility of Europeans as bearers of disease devastating to native societies. Yet the research, they said, should correct a widely held misperception that the New World was virtually free of disease before 1492.

In an epilogue to the book, Dr. Philip D. Curtin, an emeritus professor of history at Johns Hopkins University, said the skeletal evidence of the physical well-being of pre-Columbians ”shows conclusively that however much it may have deteriorated on contact with the outer world, it was far from paradisiacal before the Europeans and Africans arrived.”

About 50 scientists and scholars joined in the research and contributed chapters to the book. One of them, Dr. George J. Armelagos of Emory University, a pioneer in the field of paleopathology, said in an interview that the research provided an ”evolutionary history of disease in the New World.”

The surprise, Dr. Armelagos said, was not the evidence of many infectious diseases, but that the pre-Columbians were not better nourished and in general healthier.

Others said the research, supported by the National Science Foundation and Ohio State, would be the talk of scholarly seminars for years to come and the foundation for more detailed investigations of pre-Columbian health. Dr. Steckel is considering conducting a similar study of health patterns well into European prehistory.

”Although some of the authors occasionally appear to overstate the strength of the case they can make, they are also careful to indicate the limitations of the evidence,” Dr. Curtin wrote of the Steckel-Rose research. ”They recognize that skeletal material is the best comparative evidence we have for the human condition over such a long period of time, but it is not perfect.”

The research team gathered evidence on seven basic indicators of chronic physical conditions that can be detected in skeletons — namely, degenerative joint disease, dental health, stature, anemia, arrested tissue development, infections and trauma from injuries. Dr. Steckel and Dr. Rose called this ”by far the largest comparable data set of this type ever created.”

The researchers attributed the widespread decline in health in large part to the rise of agriculture and urban living. People in South and Central America began domesticating crops more than 5,000 years ago, and the rise of cities there began more than 2,000 years ago.

These were mixed blessings. Farming tended to limit the diversity of diets, and the congestion of towns and cities contributed to the rapid spread of disease. In the widening inequalities of urban societies, hard work on low-protein diets left most people vulnerable to illness and early death.

Similar signs of deleterious health effects have been found in the ancient Middle East, where agriculture started some 10,000 years ago. But the health consequences of farming and urbanism, Dr. Rose said, appeared to have been more abrupt in the New World.

The more mobile, less densely settled populations were usually the healthiest pre-Columbians. They were taller and had fewer signs of infectious lesions in their bones than residents of large settlements. Their diet was sufficiently rich and varied, the researchers said, for them to largely avoid the symptoms of childhood deprivation, like stunting and anemia. Even so, in the simplest hunter-gatherer societies, few people survived past age 50. In the healthiest cultures in the 1,000 years before Columbus, a life span of no more than 35 years might be usual.

In examining the skeletal evidence, paleopathologists rated the healthiest pre-Columbians to be people living 1,200 years ago on the coast of Brazil, where they had access to ample food from land and sea. Their relative isolation protected them from most infectious diseases.

Conditions also must have been salubrious along the coasts of South Carolina and Southern California, as well as among the farming and hunting societies in what is now the Midwest. Indian groups occupied the top 14 spots of the health index, and 11 of these sites predate the arrival of Europeans.

The least healthy people in the study were from the urban cultures of Mexico and Central America, notably where the Maya civilization flourished presumably at great cost to life and limb, and the Zuni of New Mexico. The Zuni lived at a 400-year-old site, Hawikku, a crowded, drought-prone farming pueblo that presumably met its demise before European settlers made contact.

It was their hard lot, Dr. Rose said, to be farmers ”on the boundaries of sustainable environments.”

”Pre-Columbian populations were among the healthiest and the least healthy in our sample,” Dr. Steckel and Dr. Rose said. ”While pre-Columbian natives may have lived in a disease environment substantially different from that in other parts of the globe, the original inhabitants also brought with them, or evolved with, enough pathogens to create chronic conditions of ill health under conditions of systematic agriculture and urban living.”

In recent examinations of 1,000-year-old Peruvian mummies, for example, paleopathologists discovered clear traces of tuberculosis in their lungs, more evidence that native Americans might already have been infected with some of the diseases that were thought to have been brought to the New World by European explorers.

Tuberculosis bears another message: as an opportunistic disease, it strikes when times are tough, often overwhelming the bodies of people already weakened by malnutrition, poor sanitation in urban centers and debilitated immune systems.

The Steckel-Rose research extended the survey to the health consequences of the first contacts with American Indians by Europeans and Africans and the health of European-Americans and African-Americans up to the early 20th century.

Not surprisingly, African-American slaves were near the bottom of the health index. An examination of plantation slaves buried in South Carolina, Dr. Steckel said, revealed that their poor health compared to that of ”pre-Columbian Indian populations threatened with extinction.”

On the other hand, blacks buried at Philadelphia’s African Church in the 1800’s were in the top half of the health index. Their general conditions were apparently superior to those of small-town, middle-class whites, Dr. Steckel said.

The researchers found one exception to the rule that the healthiest sites for Native Americans were the oldest sites. Equestrian nomads of the Great Plains of North America in the 19th century seemed to enjoy excellent health, near the top of the index. They were not fenced in to farms or cities.

In a concluding chapter of their book, Dr. Steckel and Dr. Rose said the study showed that ”the health decline was precipitous with the changes in ecological environments where people lived.” It is not a new idea in anthropology, they conceded, ”but scholars in general have yet to absorb it.”

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

Related articles

The Great Dying 1616-1619, Ipswich Historical Commission

_______________________

Fair use

This website is educational. Materials within it are being used in accord with the Fair Use doctrine, as defined by United States law.

§107. Limitations on Exclusive Rights: Fair Use

Notwithstanding the provisions of section 106, the fair use of a copyrighted work, including such use by reproduction in copies or phone records or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use, the factors to be considered shall include:

the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes;
the nature of the copyrighted work;
the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and
the effect of the use upon the potential market for or value of the copyrighted work. (added pub. l 94-553, Title I, 101, Oct 19, 1976, 90 Stat 2546)

How elections are impacted by a 100 million year old coastline

How elections are impacted by a 100 million year old coastline

Earth Science and Geology impact American social and political life in unexpected ways

Hale County in west central Alabama and Bamberg County in southern South Carolina are 450 miles apart.  Both counties have a population of 16,000 of which around 60% are African American.  The median households and per capita incomes are well below their respective state’s median, in Hale nearly $10,000 less.  Both were named after confederate officers–Stephen Fowler Hale and Francis Marion Bamberg.  And although Hale’s county seat is the self-proclaimed Catfish Capitol, pulling catfish out of the Edisto River in Bamberg County is a favorite past time.

These two counties share another unique feature. Amidst a blanket of Republican red both Hale and Bamberg voted primarily Democratic in the 2000, 2004, and again in the 2008 presidential elections.  Indeed, Hale and Bamberg belong to a belt of counties cutting through the deep south–Mississippi, Alabama, Georgia, South Carolina, and North Carolina–that have voted over 50% Democratic in recent presidential elections.

Why? A 100 million year old coastline.

Creteaceous North America coastline

During the Cretaceous, 139-65 million years ago, shallow seas covered much of the southern United States.   These tropical waters were productive–giving rise to tiny marine plankton with carbonate skeletons which overtime accumulated into massive chalk formations.  The chalk, both alkaline and porous, lead to fertile and well-drained soils in a band, mirroring that ancient coastline and stretching across the now much drier South.   This arc of rich and dark soils in Alabama has long been known as the Black Belt.

But many, including Booker T. Washington, coopted the term to refer to the entire Southern band. Washington wrote in his 1901 autobiography, Up from Slavery, “The term was first used to designate a part of the country which was distinguished by the color of the soil. The part of the country possessing this thick, dark, and naturally rich soil…”

Cretaceous rocks Alabama

Over time this rich soil produced an amazingly productive agricultural region, especially for cotton.  In 1859 alone a harvest of over 4,000 cotton bales was not uncommon within the belt. And yet, just tens of miles north or south this harvest was rare.  Of course this level of cotton production required extensive labor.

Cotton in 1859 USA

As Washington notes further in his autobiography, “The part of the country possessing this thick, dark, and naturally rich soil was, of course, the part of the South where the slaves were most profitable, and consequently they were taken there in the largest numbers. Later and especially since the war, the term seems to be used wholly in a political sense—that is, to designate the counties where the black people outnumber the white.”

Slaves 1860 American south

The legacy of ancient coastlines, chalk, soil, cotton, and slavery can still be seen today.   African Americans make up over 50%, in some cases over 85%, of the population in Black Belt counties.  As expected this has and continues to deeply influence the culture of the Black Belt.  J. Sullivan Gibson writing in 1941 on the geology of the Black Belt noted, “The long-conceded regional identity of the Black Belts roots no more deeply its physical fundament of rolling prairie soil than in its cultural, social, and economic individuality.”  And so this plays out in politics.

Census 2000 black percent African American

This Black Belt with its predominantly African American population consistently votes overwhelmingly for Democratic candidates in presidential elections. The pattern is especially pronounced on maps when a Republican candidate has secured the presidency as Bush did in 2000 and 2004.  In Southern states where a Republican secures the nomination, almost the entirety of Black Belt counties still lean Democratic. This leads to a Blue Belt of Democratic counties across the South. Even when Clinton, a Democrat, overwhelmingly took most Southern states, the percentages of those voting Democrat was still highest in the Black Belt counties.

Election Results 1964

But the Black Belt has not always been visible on maps during elections.  The Voting Rights Act, outlawing discriminatory voting practices, was passed in 1965.  As result, a year earlier in the 1964 elections larger numbers of African Americans were excluded from the polls in Southern states.  And, in turn, the blue band we see today was not visible.

Long heralded as the Black Belt for rich dark soils and later for the rich African American culture and population, it may equally be referred to as the Blue Belt to reflect both its oceanic geology and the political leanings that resulted from it.

About the author: Craig McClain is the Executive Director of the Lousiana University Marine Consortium. He has conducted deep-sea research for 20 years and published over 50 papers in the area. He has participated in and led dozens of oceanographic expeditions taken him to the Antarctic and the most remote regions of the Pacific and Atlantic.

Deep Sea News: How presidential elections are impacted by a 100 million year old coastline

–  – – – – – – – – – – – – – –

Now we move to further data, from the original article,  Geology and Election 2000: Overview, by Steven Dutch, Natural and Applied Sciences,University of Wisconsin – Green Bay

On the map of electoral returns for the presidential election of 2000 is a feature instantly recognizable to a geologist: in the otherwise pro-Bush South, an arcuate band of pro-Gore counties sweeps from eastern Mississippi, across Alabama and Georgia and into the Carolinas.

Election results 2000

My geologist’s eye was immediately drawn to this arc because it coincides almost exactly with a series of rock units on the Geologic Map of the United States. Why would election returns follow rock outcrops?

In the map below, Cretaceous rock units (139-65 million years old) are shown in shades of green. Older rock units are in gray, younger ones in yellow. The complex NE-trending patterns in Alabama, Georgia and South Carolina are deformed rocks of the Appalachians. In NW Alabama, the older rocks are flat-lying layers of the continental interior.

Cretaceous rocks Alabama

Comparison with the geologic maps shows that the arc actually consists of three segments.

  • In Mississippi and Alabama the pro-Gore band of counties corresponds very closely with the units labeled uK – upper Cretaceous. We might suspect that  the most likely explanation for this part of the arc has to do with economic patterns dictated by the soils. Most of the electoral and demographic patterns associated with the band end abruptly in NE Mississippi.
  • In Georgia, the Cretaceous outcrop band is very narrow. It is surprising how clear the pro-Gore band is in Georgia considering how narrow and discontinuous the outcrop band of Cretaceous rocks is. This part of the arc may have less to do with the rocks themselves than the boundary between the Appalachians and the Coastal Plain.
  • In South Carolina, however, the band of Democratic counties is well defined but is consistently seaward of the Cretaceous rock units. In fact, on some maps there seems to be a weak anti-correlation between the Cretaceous rocks in South Carolina and the political and demographic trends noted for the other three states. However, the South Carolina portion of the arc turns out to be consistent in election returns and a variety of other demographic factors.

This band shows up with varying degrees of prominence for previous elections as well. It shows the same correlation with rock units in Mississippi, Alabama and Georgia and the same lack of correlation in South Carolina. It further shows strong correlation with demographic trends.

The Coastal plain rocks slope gently seaward toward the Gulf and Atlantic coasts, a structure called a homocline. I therefore propose to call the arc of pro-Democratic counties, which is reflected in a variety of demographic trends, the Cretaceous Homoclinal Arc of Demography, which can be abbreviated by an acronym that more than anything else symbolizes the election of 2000: CHAD.

(more to come)

text

This website is educational. Materials within it are being used in accord with the Fair Use doctrine, as defined by United States law.

§107. Limitations on Exclusive Rights: Fair Use

Notwithstanding the provisions of section 106, the fair use of a copyrighted work, including such use by reproduction in copies or phone records or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use, the factors to be considered shall include:

the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes;
the nature of the copyrighted work;
the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and
the effect of the use upon the potential market for or value of the copyrighted work. (added pub. l 94-553, Title I, 101, Oct 19, 1976, 90 Stat 2546)

Model ship building in Boston

Topics: Scale conversions (math); Maritime history

Wooden ship models or wooden model ships are scale representations of ships, constructed mainly of wood. This type of model has been built for over two thousand years.

The ship: HMS Victory

She is a 104-gun first-rate ship of the line of the Royal Navy, ordered in 1758, laid down in 1759 and launched in 1765. She is best known for her role as Lord Nelson’s flagship at the Battle of Trafalgar on 21 October 1805. In 1922, she was moved to a dry dock at Portsmouth, England, and preserved as a museum ship. She has been the flagship of the First Sea Lord since October 2012 and is the world’s oldest naval ship still in commission.

The artist:

My father grew up on Boston Harbor. In addition to being a soldier, and an engineer with a research think tank, he did ship modeling at the USS Constitution Museum.

Dad's Kaiser HMS Victory model ship

In the USS Constitution Museum workshop, 1990’s.

Dad's Kaiser HMS Victory model ship II July 2004.JPG

A model of The US Navy Schooner Enterprise

The third ship to be named USS Enterprise was a schooner, built by Henry Spencer at Baltimore, Maryland, in 1799. It was overhauled and rebuilt several times, effectively changing from a twelve-gun schooner to a fourteen-gun topsail schooner and eventually to a brig.

Dad's Navy Schooner Enterprise model ship

Front view

Dad's Navy Schooner Enterprise II

The Flying Fish

Dad's Flying Fish ship model

The Flying Fish

Dad's Flying Fish ship model II

The last model ship hull that my father,ז״ל, was working on.

Dad's last model ship hull

 

Scale conversion factors

Written by George Kaiser (later incorporated into Wikipedia)

Instead of using plans made specifically for models, many model shipwrights use the actual blueprints for the original vessel. One can take drawings for the original ship to a blueprint service and have them blown up, or reduced to bring them to the new scale.

For instance, if the drawings are in 1/4″ scale and you intend to build in 3/16″, tell the service to reduce them 25%. You can use the conversion table below to determine the percentage of change. You can easily work directly from the original drawings however, by changing scale each time you make a measurement.

Table of Scale Conversion Factors

from to 1/8 to 3/16 to 1/4
1/16 2.0 3.0 4.0
1/12 1.5 2.25 3.0
3/32 1.33 2.0 2.67
1/8 1.0 1.5 2.0
5/32 0.8 1.2 1.6
3/16 0.67 1.0 1.33
1.5 0.625 0.94 1.25
7/32 0.57 0.86 1.14
1/4 0.5 0.75 1.0

The equation for converting a measurement in one scale to that of another scale is D2 = D1 x F where:

  • D1 = Dimension in the “from-scale”

  • D2 = Dimension in the “to-scale”

  • F = Conversion factor between scales

Example: A yardarm is 6″ long in 3/16″ scale. Find its length in 1/8″ scale.

  • F = .67 (from table)

  • D2 = 6″ X .67 = 4.02 = 4″

It is easier to make measurements in the metric system and then multiply them by the scale conversion factor. Scales are expressed in fractional inches, but fractions themselves are harder to work with than metric measurements.

For example, a hatch measures 1″ wide on the draft. You are building in 3/16″ scale. Measuring the hatch in metric, you measure 25 mm. The conversion factor for 1/4″ to 3/16′, according to the conversion table is .75. So 25 mm x .75 = 18.75 mm, or about 19 mm. That is the hatch size in 3/16″ scale.

Conversion is a fairly simple task once you start measuring in metric and converting according to the scale.

There is a simple conversion factor that allows you to determine the approximate size of a model by taking the actual measurements of the full-size ship and arriving at a scale factor. It is a rough way of deciding whether you want to build a model that is about two feet long, three feet long, or four feet long.

Here is a ship model conversion example using a real ship, the Hancock. This is a frigate appearing in Chappelle’s “History of American Sailing Ships”.

In this example we want to estimate its size as a model. We find that the length is given at 136 ft 7 in, which rounds off to 137 feet.

1/8 scale Feet divided by 8
3/16 scale Feet divided by 5.33
1/4 scale Feet divided by 4

To convert feet (of the actual ship) to the number of inches long that the model will be, use the factors in the table on the right.

To find the principal dimensions (length, height, and width) of a (square rigged) model in 1/8″ scale, then:

  1. Find scaled length by dividing 137 by 8 = 17.125″

  2. Find 50% of 17.125 and add it to 17.125 (8.56 + 17.125 = 25.685, about 25.5)

  3. Typically, the height of this model will be its length less 10% or about 23.1/2″

  4. Typically, the beam of this model will be its length divided by 4, or about 6 1/2″

Although this technique allows you to judge the approximate length of a proposed model from its true footage, only square riggers will fit the approximate height and beam by the above factors. To approximate these dimensions on other craft, scale the drawings from which you found the length and arrive at her mast heights and beam.

Reference: Williams, Guy R. The World of Model Ships and Boats London 1971 Page 30

External links

The USS Constitution Model Shipwright Guild

We are the largest model ship association on the East Coast and our friendly meetings overlooking Old Ironsides at the USS Constitution Museum are well attended. Novices and experienced model builders alike can have fun developing resources, experiences, and skills by joining us.

The USS Constitution Museum, located in the Charlestown Navy Yard, which is part of the Boston National Historical Park

The USS Constitution Museum serves as the memory and educational voice of USS Constitution, by collecting, preserving, and interpreting the stories of “Old Ironsides” and the people associated with her.

The science and history of the sea

https://en.wikipedia.org/wiki/Ship_model

https://en.wikipedia.org/wiki/Wooden_ship_model

Learning Standards

2016 Massachusetts Science and Technology/Engineering Curriculum Framework

Ocean Literacy The Essential Principles and Fundamental Concepts of Ocean Sciences: March 2013 and Ocean Literacy Network. The Centers for Ocean Sciences Education Excellence (COSEE) and Lawrence Hall of Science, University of California, Berkeley

Massachusetts History and Social Science Curriculum Frameworks

5.11 Explain the importance of maritime commerce in the development of the economy of colonial Massachusetts, using historical societies and museums as needed. (H, E)

5.32 Describe the causes of the war of 1812 and how events during the war contributed to a sense of American nationalism. A. British restrictions on trade and impressment.  B. Major battles and events of the war, including the role of the USS Constitution, the burning of the Capitol and the White House, and the Battle of New Orleans.

National Council for the Social Studies: National Curriculum Standards for Social Studies

Time, Continuity and Change: Through the study of the past and its legacy, learners examine the institutions, values, and beliefs of people in the past, acquire skills in historical inquiry and interpretation, and gain an understanding of how important historical events and developments have shaped the modern world. This theme appears in courses in history, as well as in other social studies courses for which knowledge of the past is important.

A study of the War of 1812 enables students to understand the roots of our modern nation. It was this time period and struggle that propelled us from a struggling young collection of states to a unified player on the world stage. Out of the conflict the nation gained a number of symbols including USS Constitution. The victories she brought home lifted the morale of the entire nation and endure in our nation’s memory today. – USS Constitution Museum, National Education Standards

Common Core ELA: Reading Instructional Texts

CCSS.ELA-LITERACY.RI.9-10.1
Cite strong and thorough textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text.

CCSS.ELA-LITERACY.RI.9-10.4
Determine the meaning of words and phrases as they are used in a text, including figurative, connotative, and technical meanings

Common Core ELA Writing

CCSS.ELA-LITERACY.W.9-10.1.C
Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.

CCSS.ELA-LITERACY.W.9-10.1.D
Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.

CCSS.ELA-LITERACY.W.9-10.4
Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.