KaiserScience

Home » Teaching (Page 13)

Category Archives: Teaching

Tier I, II and III vocabulary

What are the critical words in our lessons? These include not only new terms that we introduce in that topic, but more importantly, all of the common words that students supposedly “already know.” The problem is that many students don’t always know what these words means.

Tier Vocabulary

Tier One – These are everyday words – including nouns, verbs, adverbs, and adjectives – that are learned in the early grades. By the time we get to high school classes, teachers shouldn’t even need to think about teaching such vocabulary.

Tier Two – Here we go! These are high frequency words, used across content areas, that are key to a student understanding directions, understanding relationships, and for making inferences.

The problem with tier two words is that although all students read and use them, some don’t fully understand how they function.

High school teachers thus need to carefully examine student reading and verbal comprehension early on in the year, and take care to explain and model how these terms are used.

Tier II Words list

Academic language from resources.successforall.org

Tier Three – These are low-frequency, domain-specific words. These words only come up in certain subjects, or certain topics.

Tier III Words list

External resources

Worksheet: Three Tiers of Vocabulary and Education

The Science and History of the Sea

Session 1: TBA at the USS Constitution Museum. Museum staff led.

Constitution Museum Charlestown (1)

Introductory movie (10 minutes)

  • Design your own frigate based on the templates of Constitution’s ship designer Joshua Humphreys: Students will produce drawings.
  • Made in America – what materials were used to create the USS Constitution? Students will create a list of 5 materials from the New England region.
  • Which of these woods is the hardest? Through dropping balls into difference woods, we can study the difference in how the ball bounces back. The kinetic energy of the rebounding ball is related to the amount of energy absorbed by the wood. See the difference between kinetic energy and potential energy.
  • Test your ship against other frigates in this hands-on challenge. Choose between three different types of ships for the ultimate test of size, speed and power: An interactive computer simulation.
  • What’s so great about copper? Learn about the metals used in construction
  • Build a ship: Assemble 2D pieces into a 3D model – how quickly can they accurately complete the task?
  • Construction and launch: View this video, and then explain how a ship is safely launched from a drydock into the ocean.  Students will demonstrate that they understand the procedure by writing a step-by-step paragraph explaining the sequence.
  • How can a ship sail against the wind? Through a hands on experiment, see how changing the angle of the sail affects the motion of the boat: Students should be able to explain in complete sentences how the same wind can make a ship move forwards or backwards.
  • On the 2nd story of the museum, operate a working block-and-tackle system. This uses a classic simple machine. It is a system of two or more pulleys with a rope or cable threaded between them, usually used to lift or pull heavy loads. Back in the school building, we’ll review each of the classic simple machines.

On the 2nd story of the museum, operate a working block-and-tackle system. This uses a classic simple machine: pulleys with a rope or cable threaded between them, to lift or pull heavy loads.

pulley simple machine

 

Session 2: USS Constitution Visitor Center, Building 5

10 minute orientation video

Can you locate where our school is on the 3D Boston Naval Shipyard model?

As students tour the visitor center, they practice ELA reading and writing skills (listed below) by briefly summarizing something they learn from each of these sections: They are encouraged to create drawings/tracings as they see fit to help illustrate their text.

  • Describe how ropes are made from string in the ropewalk
  • From wood & sail to steel & steam
  • Preparing for new technology
  • The shipyard in the Civil War
  • Ships and shipbuilding
  • The Navy Yard 1890-1974
  • Chain Forge and Foundary
  • The Navy Yard during World Wars I and II
  • Shipyard workers 1890 to 1974
  • The shipyard during the Cold War era 1945-1974

Session 4: Teaching math using the USS Constitition

Teaching math: Lessons from the USS Constitution

This teaching supplement contains math lessons organized in grade-level order. However, because many of the math skills used in these lessons are taught in multiple grades, both grade-level and lesson content are listed below.

Pre K–K 
Estimating Numbers of Objects

Grade 1
Estimating and Comparing Numbers of Objects

Grade 2
Estimating and Comparing Length, Width and Perimeter

Grade 3
Computing Time and Creating a Schedule

Grade 4
Drawing Conclusions from Data Sets

Grade 5
Creating and Interpreting Graphs from Tables

Grade 6
Range, Mean, Median and Mode and Stem-and-Leaf Plots

Grade 7
Converting Between Systems of Measurement

Grade 8
Calculating Volume

Algebra I (Grade 9–10)
Describing Distance and Velocity Graphs

Algebra I (Grade 9–10)
Writing Linear Equations

Algebra II (Grade 9–12)
Using Projectile Motion to Explore Maximums and Zeros

Precalculus & Advanced Math (Grade 10–12)
Using Parabolic Equations & Vectors to Describe the Path of Projectile Motion

Learning Standards

MA 2006 Science Curriculum Framework

2. Engineering Design. Central Concept: Engineering design requires creative thinking and consideration of a variety of ideas to solve practical problems. Identify tools and simple machines used for a specific purpose, e.g., ramp, wheel, pulley, lever.

Massachusetts Science and Technology/Engineering Curriculum Framework

HS-ETS4-5(MA). Explain how a machine converts energy, through mechanical means, to do work. Collect and analyze data to determine the efficiency of simple and complex machines.

Benchmarks, American Association for the Advancement of Science

In the 1700s, most manufacturing was still done in homes or small shops, using small, handmade machines that were powered by muscle, wind, or moving water. 10J/E1** (BSL)

In the 1800s, new machinery and steam engines to drive them made it possible to manufacture goods in factories, using fuels as a source of energy. In the factory system, workers, materials, and energy could be brought together efficiently. 10J/M1*

The invention of the steam engine was at the center of the Industrial Revolution. It converted the chemical energy stored in wood and coal into motion energy. The steam engine was widely used to solve the urgent problem of pumping water out of coal mines. As improved by James Watt, Scottish inventor and mechanical engineer, it was soon used to move coal; drive manufacturing machinery; and power locomotives, ships, and even the first automobiles. 10J/M2*

The Industrial Revolution developed in Great Britain because that country made practical use of science, had access by sea to world resources and markets, and had people who were willing to work in factories. 10J/H1*

The Industrial Revolution increased the productivity of each worker, but it also increased child labor and unhealthy working conditions, and it gradually destroyed the craft tradition. The economic imbalances of the Industrial Revolution led to a growing conflict between factory owners and workers and contributed to the main political ideologies of the 20th century. 10J/H2

Today, changes in technology continue to affect patterns of work and bring with them economic and social consequences. 10J/H3*

Massachusetts History and Social Science Curriculum Frameworks

5.11 Explain the importance of maritime commerce in the development of the economy of colonial Massachusetts, using historical societies and museums as needed. (H, E)

5.32 Describe the causes of the war of 1812 and how events during the war contributed to a sense of American nationalism. A. British restrictions on trade and impressment.  B. Major battles and events of the war, including the role of the USS Constitution, the burning of the Capitol and the White House, and the Battle of New Orleans.

National Council for the Social Studies: National Curriculum Standards for Social Studies

Time, Continuity and Change: Through the study of the past and its legacy, learners examine the institutions, values, and beliefs of people in the past, acquire skills in historical inquiry and interpretation, and gain an understanding of how important historical events and developments have shaped the modern world. This theme appears in courses in history, as well as in other social studies courses for which knowledge of the past is important.

A study of the War of 1812 enables students to understand the roots of our modern nation. It was this time period and struggle that propelled us from a struggling young collection of states to a unified player on the world stage. Out of the conflict the nation gained a number of symbols including USS Constitution. The victories she brought home lifted the morale of the entire nation and endure in our nation’s memory today. – USS Constitution Museum, National Education Standards

Common Core ELA: Reading Instructional Texts

CCSS.ELA-LITERACY.RI.9-10.1
Cite strong and thorough textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text.

CCSS.ELA-LITERACY.RI.9-10.4
Determine the meaning of words and phrases as they are used in a text, including figurative, connotative, and technical meanings

Common Core ELA Writing

CCSS.ELA-LITERACY.W.9-10.1.C
Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.

CCSS.ELA-LITERACY.W.9-10.1.D
Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.

CCSS.ELA-LITERACY.W.9-10.4
Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

External links

The USS Constitution Museum, located in the Charlestown Navy Yard, which is part of the Boston National Historical Park

Schrödinger’s cat

Schrödinger’s cat is a thought experiment, sometimes described as a paradox, devised by Austrian physicist Erwin Schrödinger in 1935.

It illustrates what he saw as the problem of the Copenhagen interpretation of quantum mechanics when applied to everyday objects.

Cat static balloons

Here is how the Schrödinger’s cat thought experiment works:

Acat, a flask of poison, and a radioactive source are placed in a sealed box.

If an internal monitor detects radioactivity (i.e., a single atom decaying), the flask is shattered, releasing the poison, which kills the cat.

The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is simultaneously alive and dead.

Yet, when one looks in the box, one sees the cat either alive or dead, not both alive and dead.

schrodingers-cat-experiment

This poses the question of when exactly quantum superposition ends and reality collapses into one possibility or the other.

The Copenhagen interpretation implies that the cat remains both alive and dead – until the state is observed.

Schrödinger did not wish to promote the idea of dead-and-alive cats as a serious possibility.

On the contrary, he intended the example to illustrate the absurdity of the existing view of quantum mechanics

schrodingers-cat

Since Schrödinger’s time, other interpretations of quantum mechanics have been proposed that give different answers to the questions posed by Schrödinger’s cat of how long superpositions last and when (or whether) they collapse.

This introduction has been adapted from “Schrödinger’s cat.” Wikipedia, The Free Encyclopedia, 5 Feb. 2017.

Many-worlds interpretation and consistent histories

In 1957, Hugh Everett formulated the many-worlds interpretation of quantum mechanics, which does not single out observation as a special process.

In the many-worlds interpretation, both alive and dead states of the cat persist after the box is opened, but are decoherent from each other.

schroedingers-cat-many-world-svg

In other words, when the box is opened, the observer and the possibly-dead cat split into an observer looking at a box with a dead cat, and an observer looking at a box with a live cat.

But since the dead and alive states are decoherent, there is no effective communication or interaction between them. We have created parallel universes!

Decoherence interpretation

When opening the box, the observer becomes entangled with the cat.

Therefore “observer states” corresponding to the cat’s being alive and dead are formed; each observer state is entangled or linked with the cat so that the “observation of the cat’s state” and the “cat’s state” correspond with each other.

Quantum decoherence ensures that the different outcomes have no interaction with each other. The same mechanism of quantum decoherence is also important for the interpretation in terms of consistent histories.

Only the “dead cat” or the “alive cat” can be a part of a consistent history in this interpretation.

cat-quantum-meme

External resources

https://www.newscientist.com/article/2097199-seven-ways-to-skin-schrodingers-cat/

 

Learning Standards

SAT Subject Test: Physics

Quantum phenomena, such as photons and photoelectric effect
Atomic, such as the Rutherford and Bohr models, atomic energy levels, and atomic spectra
Nuclear and particle physics, such as radioactivity, nuclear reactions, and fundamental particles
Relativity, such as time dilation, length contraction, and mass-energy equivalence

AP Physics Curriculum Framework
Essential Knowledge 1.D.1: Objects classically thought of as particles can exhibit properties of waves.
a. This wavelike behavior of particles has been observed, e.g., in a double-slit experiment using elementary particles.
b. The classical models of objects do not describe their wave nature. These models break down when observing objects in small dimensions.

Learning Objective 1.D.1.1:
The student is able to explain why classical mechanics cannot describe all properties of objects by articulating the reasons that classical mechanics must be refined and an alternative explanation developed when classical particles display wave properties.

Essential Knowledge 1.D.2: Certain phenomena classically thought of as waves can exhibit properties of particles.
a. The classical models of waves do not describe the nature of a photon.
b. Momentum and energy of a photon can be related to its frequency and wavelength.

Content Connection: This essential knowledge does not produce a specific learning objective but serves as a foundation for other learning objectives in the course.

A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012)

Electromagnetic radiation can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. Quantum theory relates the two models…. Knowledge of quantum physics enabled the development of semiconductors, computer chips, and lasers, all of which are now essential components of modern imaging, communications, and information technologies

Mirages

A mirage is a naturally occurring optical phenomenon in which light rays are bent to produce a displaced image of distant objects or the sky.

The word comes to English via the French mirage, from the Latin mirari, meaning “to look at, to wonder at”. This is the same root as for “mirror” and “to admire”.

In contrast to a hallucination, a mirage is a real optical phenomenon that can be captured on camera, since light rays are actually refracted to form the false image at the observer’s location.

What the image appears to represent, however, is determined by the interpretive faculties of the human mind. For example, inferior images on land are very easily mistaken for the reflections from a small body of water.

Mirages can be categorized as:

“inferior” (meaning lower)

“superior” (meaning higher)

“Fata Morgana”, one kind of superior mirage consisting of a series of unusually elaborate, vertically stacked images, which form one rapidly changing mirage.

Mirage. (2016, December 18). In Wikipedia, The Free Encyclopedia.

Problems

According to legend, Erik the Red sailed from Iceland and discovered Greenland after he had seen the island in a mirage. Describe how the mirage might have occurred.

Erik The Red Mirage Greenland

Well, that answer from our textbook teacher editions, however true, isn’t very helpful. It’s not clear what we are looking at. Let’s look at a much better picture to see both the problem and the solution.

Problem: Erik the Red shouldn’t be able to see Greenland from where he is standing, on Iceland. Greenland is so far away that it is over the curve of the Earth (over the horizon.)

Solution:

The superior mirage, also know in northern polar regions as the arctic mirage — or in Icelandic, the hillingar effect — causes the light from distant objects to be optically refracted downward

Thus it becomes possible for objects lying beyond the normal horizon to be seen.

(They even appear, at times, to rise up over the horizon, a condition known to mariners as looming, and look much closer in distance.)

Fata Morgana Mirage in Greenland, 1999, by Jack Stephens

Fata Morgana Mirage in Greenland by Jack Stephens

SEE BELOW FOR THE FAMOUS MOBY DICK MIRAGE

superior mirage arctic

The arctic mirage, on the other hand, occurs when the light rays are refracted downward by cold, dense air near the earth into an arc bending toward the observer. (In the diagrams accompanying this article, the dark lines indicate the actual light ray path and the white dashed lines the path our mind thinks it sees.)

The refractivity of air — a measure of the air’s ability to bend the path of light rays — is dependent upon its density, and the density of air is inversely related to its temperature (decreasing as temperature increases). The atmospheric conditions for producing the arctic mirage occur when cool air adjacent to the surface underlies warm air. When the air temperature increases with altitude, the condition is known meteorologically as a temperature inversion.

When the temperature of the lower atmosphere increases with altitude at a rate of 11.2 C° per 100 metres (6.0 F° per 100 ft), the refractive capacity of the air is great enough to cause the path of light rays to bend in an arc equal to the curvature of the Earth.

This curvature can present an observer with the image of a flat horizon receding to infinity. A temperature gradient greater than 11.2 C° per 100 m causes light ray paths to exceed the curvature of the Earth, and thus the horizon would appear to be raised upward giving the Earth’s surface a saucer-shaped appearance.

Under this latter condition, images of objects located at or below the normal optical horizon, such as mountains, glaciers, cliffs or sea-ice rise (loom) into the field of vision, overcoming the normal visual restrictions of the curvature of the Earth.

The normal viewing distance at the surface of the earth depends upon the height of the object being observed and the height of the observer. Disregarding atmospheric effects on light rays, the curvature of the earth restricts the distance one can see from the surface.

For example, a beach or small iceberg rising 3.0 to 3.7 m (10 to 12 ft) above the sea surface can be seen from the surface at a distance of no more than 19.2 km (12 miles) through a clear, normal atmosphere.

A mountain peak of 914 metres (3,000 feet) would disappear at 115 kilometres (72 miles) distant, one 1520 m (5,000 ft) tall at 150 km (94 miles).

The maximum viewing distance under arctic mirage conditions, on the other hand, is limited only by the light absorption of the atmosphere. Near sea level, the transmission of light is generally of sufficient quality to enable the naked eye to potentially see objects at a distance of up to 400 km (250 miles).

However, when the refracting layer is at the upper boundary of a very deep cold layer, the thinner air may permit more light to be transmitted, thus making visibility in excess of 400 km possible.

superior mirage arctic Greenland Iceland

Under arctic mirage conditions, instances of atmospheric visibility extending 320 km (200 miles) have been reported. In 1937 and 1939, W.H. Hobbs documented several occasions during which objects were sighted at distances well in excess of those possible under normal viewing conditions.

Answer text from The Arctic Mirage. Aid to Discovery. The Weather Doctor.

Moby Dick illusion

James Rickards writes

One famous literary description of a Fata Morgana occurs in Chapter 135 of Herman Melville’s masterpiece, Moby Dick. As Ahab is pulled overboard, and the White Whale rams the Pequod, Melville writes:

“The ship? Great God, where is the ship? Soon they through dim, bewildering mediums saw her sidelong fading phantom, as in the gaseous Fata Morgana.”

But, of course the ship was sinking, the vision was an illusion.

Chapter 135 Herman Melville Moby Dick

Amazing examples

A Ship Floating In Mid-Air At A Scottish Golf Tournament?

Images from Why Was There A Ship Floating In Mid-Air At A Golf Tournament? BuzzFeed

Just like the above mentioned mirages!

Tom Phillips BuzzFeed ilyast syntika Thinkstock Mirage

Enter a caption

image: Tom Phillips/BuzzFeed/ilyast/syntika/Thinkstockscottish-golf-tournament-floating-ship-mirage Aberdeen Open

Floating boats and islands

Video

Island and fishing boat mirage

Fata Morgana Mirage at Cocoa Beach, FL!

https://www.youtube.com/watch?v=VcEn3jb3oq4

Lake Superior Marquette, MI 05.23.15 – first scene is real time, freighter in to Marquette, second is timelapse, Granite Island looking like a lava lamp

https://www.youtube.com/watch?v=xJfJTdy2Ge8


External links

An Introduction to Mirages, Andrew T. Young

Fata Morgana between the Continental Divide and the Missouri River

Learning Standards

2016 Massachusetts Science and Technology/Engineering Curriculum Framework

HS-PS4-3. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described by either a wave model or a particle model, and that for some situations involving resonance, interference, diffraction, refraction, or the photoelectric effect, one model is more useful than the other.

A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012)

Core Idea PS4: Waves and Their Applications in Technologies for Information Transfer
When a wave passes an object that is small compared with its wavelength, the wave is not much affected; for this reason, some things are too small to see with visible light, which is a wave phenomenon with a limited range of wavelengths corresponding to each color. When a wave meets the surface between two different materials or conditions (e.g., air to water), part of the wave is reflected at that surface and another part continues on, but at a different speed. The change of speed of the wave when passing from one medium to another can cause the wave to change direction or refract. These wave properties are used in many applications (e.g., lenses, seismic probing of Earth).

The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. The reflection, refraction, and transmission of waves at an interface between two media can be modeled on the basis of these properties.

All electromagnetic radiation travels through a vacuum at the same speed, called the speed of light. Its speed in any given medium depends on its wavelength and the properties of that medium. At the surface between two media, like any wave, light can be reflected, refracted (its path bent), or absorbed. What occurs depends on properties of the surface and the wavelength of the light.

SAT Subject Area Test in Physics

Waves and optics:

  • Reflection and refraction, such as Snell’s law and changes in wavelength and speed
  • Ray optics, such as image formation using pinholes, mirrors, and lenses

Also see Benchmarks: American Association for the Advancement of Science

Declining Student Resilience

It has been widely reported that middle and high-school age students are suffering from much more depression, anxiety, dysphoria, and dysmorphia. Why is this?

Some social media posts suggest that this is related to the school closures due to the Covid-19 pandemic, and temporary social isolation that resulted. But numerous studies have shown that these massively increasing psychological problems among youth began a decade before this. Covid-19 only made these already existing issues more visible.

Studies show that declining student mental health and resilience is linked with the rise in use of social media, and the corrosive way that people use it and are affected by it.

Students who spend more time on social media, instead of interacting in the real world with peers, report more anxiety, depression, body dysmorphia, gender dysphoria, and symptoms related to anorexia.

Students who spend more time with friends and family, and community groups in the real world, report much less of this. Let’s be honest and ask two questions:

How many hours a week do typical students spend on cell phones and social media?

Pay attention closely – many kids underestimate the number of hours.

How many hours a week do typical students engage in healthy fun such as 

playing outdoors at recess; playing outdoors after school and on weekends

Participating in the Boy scouts, Girl scouts, 4 H club, etc.

Helping neighbors at the senior center; spending time with their grandparents

Playing a musical instrument; being in a band or chorus

spending time with friends at church or synagogue youth groups

hanging out with friends at the beach, parks, or mall. Roller skating. Anything fun in a group.

I have many years of experience as a teacher; I’ve spent a lot of time listening to students about such things. Growing up, my friends and I spent well over 20 hours a week, collectively, on these things. To my dismay, in recent years most of my students report spending almost no time doing this. Rather, it’s mostly homework, social media, or social media-via-video gaming online.

As the articles below clearly show, human beings evolved outdoors as social beings. Nothing in our evolution prepared us for sitting still seven hours a day in school without recess, or sitting still for hours each day listening to toxic messages on social media.

This realization is not old people being grumpy, not keeping up with the times. The socially indoctrinated behaviors of today’s young people are demonstrably psychologically unhealthy.

I urge teachers, school counselors, and parents to read these articles –

Declining Student Resilience: A Serious Problem for Colleges

By Peter Gray, Psychology Researcher at Boston College, September 22, 2015

A year ago I received an invitation from the head of Counseling Services at a major university to join faculty and administrators for discussions about how to deal with the decline in resilience among students.

At the first meeting, we learned that emergency calls to Counseling had more than doubled over the past five years. Students are increasingly seeking help for, and apparently having emotional crises over, problems of everyday life.

Recent examples mentioned included a student who felt traumatized because her roommate had called her a [bad name] and two students who had sought counseling because they had seen a mouse in their off-campus apartment. The latter two also called the police, who kindly arrived and set a mousetrap for them.

Faculty at the meetings noted that students’ emotional fragility has become a serious problem when it comes to grading. Some said they had grown afraid to give low grades for poor performance, because of the subsequent emotional crises they would have to deal with in their offices. Many students, they said, now view a C, or sometimes even a B, as failure, and they interpret such “failure” as the end of the world.

Faculty also noted an increased tendency for students to blame them (the faculty) for low grades—they weren’t explicit enough in telling the students just what the test would cover or just what would distinguish a good paper from a bad one. They described an increased tendency to see a poor grade as reason to complain rather than as reason to study more, or more effectively.

Much of the discussions had to do with the amount of handholding faculty should do versus the degree to which the response should be something like, “Buck up, this is college.” Does the first response simply play into and perpetuate students’ neediness and unwillingness to take responsibility? Does the second response create the possibility of serious emotional breakdown, or, who knows, maybe even suicide?

Two weeks ago, that head of Counseling sent us all a follow-up email, announcing a new set of meetings. His email included this sobering paragraph:

“I have done a considerable amount of reading and research in recent months on the topic of resilience in college students. Our students are no different from what is being reported across the country on the state of late adolescence/early adulthood. There has been an increase in diagnosable mental health problems, but there has also been a decrease in the ability of many young people to manage the everyday bumps in the road of life. Whether we want it or not, these students are bringing their struggles to their teachers and others on campus who deal with students on a day-today basis. The lack of resilience is interfering with the academic mission of the University and is thwarting the emotional and personal development of students.”

The full article is available here Psychology Today: Declining student resilience, by Peter Gray

Decline of Play and the Rise of Psychopathology in Children and Adolescents

Over the past half century, in the United States and other developed nations, children’s free play with other children has declined sharply. Over the same period, anxiety, depression, suicide, feelings of helplessness, and narcissism have increased sharply in children, adolescents, and young adults. This article documents these historical changes and contends that the decline in play has contributed to the rise in the psychopathology of young people.

Play functions as the major means by which children (1) develop intrinsic interests and competencies; (2) learn how to make decisions, solve problems, exert self-control, and follow rules; (3) learn to regulate their emotions; (4) make friends and learn to get along with others as equals; and (5) experience joy. Through all of these effects, play promotes mental health. Key words: anxiety; decline of play; depression; feelings of helplessness;
free play; narcissism; psychopathology in children; suicide

The Decline of Play and the Rise of Psychopathology in Children and Adolescents

Helicopter Parenting & College Students’ Increased Neediness

In my last post, I summarized reports from directors of college counseling services concerning college students’ rising levels of depression and anxiety; declining abilities to cope effectively with problems of everyday life; and increasing feelings of entitlement … A common theory is that these changes may be at least partly attributable to a rise in “helicopter parenting”

… The theory makes sense, logically, but is there any empirical evidence? A first step in testing the theory is to look for correlations between the style of parenting and students’ emotional and behavioral well-being. Are students whose parents are highly controlling and intrusive more likely than others to manifest the kinds of problems reported by college counselors? A number of studies have examined this question, and the results of all that I have found indicate that the answer is yes.

Helicopter Parenting & College Students’ Increased Neediness
Researchers link helicopter parenting to emotional fragility in young adults.
Peter Gray, Psychology Today, Oct 23, 2015

The Many Shades of Fear-Based Parenting

I have long been advocating, on this blog and elsewhere, for what I refer to as trustful parenting. Trustful parents allow their children as much freedom as reasonably possible to make their own decisions. They trust their children’s instincts, judgments, and ability to learn from mistakes….

The enemy of trustful parenting is fear, and, unfortunately, fear runs rampant in our society today. It runs rampant not because the world is truly more dangerous than it was in the past, but because we as a society have generated dangerous myths about dangers. We are afraid that strangers will snatch our children away if we don’t guard them constantly and that our children will be homeless, or in some other way life failures, if they don’t get all As in school, do all the proper extracurricular activities, and get into a top-ranked college…

Fear-based parenting comes in various shades, depending partly on the types of fears most prominent in the parents’ minds and partly on the parents’ personalities and economic means. Here is a list.

The Many Shades of Fear-Based Parenting, Peter Gray, Psychology Today, Mar 25, 2019

Doing More Time in School

Those who want more forced schooling ignore students’ opinions.
by Peter Gray

Kids aren’t learning much in school, so let’s make them start school when they are younger; let’s make them stay more hours in school each day and more days each year; and let’s not allow them to leave until they are at least 18 years old. Let’s do all this especially to the poor kids; they are getting the least out of school now, so let’s lengthen their time in school even more than we lengthen the time for others!…

Doing More Time in School

School districts now go so far as to ban ‘tag’

Schools are contributing to mental health problems in children by banning normal, healthy forms of play and social interaction. Many now claim that even tag is too emotionally and physically dangerous to kids.

http://www.freerangekids.com/school-district-bans-tag-for-students-physical-and-emotional-safety/

Children are literally not free to play outside

From the article

As if parents don’t have enough to worry about in the midst of a pandemic, last week, I got a terribly upsetting email from a dad who wrote to say that Child Protective Services, or CPS, had come to investigate him. Not because his kids weren’t social distancing. Not because of any beatings or starvation or deliberate exposure to dangerous germs.

He was being investigated for allowing his kids, ages 6 and 3, to play on their own front lawn.

The email came to me from a dad in Texas. He wrote, “While letting my kids play in my front yard, I got CPS called on me. I wasn’t out there with them but I was going out every 5 to 10 minutes and watching through the window between checks.”  When the caseworker arrived, his son made some popcorn, and the caseworker commented on how self-reliant he was. But self-reliant or not, the caseworker added, Dad had to be by his kids’ side at all times.

That is simply not true.

“Misstatements of law like this happen all around the country,” says longtime Chicago-based child welfare lawyer Diane Redleaf. “Neglect laws are intended to protect children from serious harm. That’s why it is more important than ever to get child protection policy right.”

The idea that kids can’t play on their own lawn, lightly supervised, is nonsensical in the best of times. When there’s a pandemic and kids are cooped up 24/7 for weeks at a time, it is even more important that we all understand: Kids need some play time. Parents need some work time. Even if helicopter parenting was the crazy norm before, it’s impossible now.

From Kids Deserve Playtime Without Their Parents Getting Arrested, Lenore Skenazy, The Sun (newspaper) 4/27/2020

Scientific studies of cell phone usage and mental health

Excessive Smartphone Use Is Associated With Health Problems in Adolescents and Young Adults
Yehuda Wacks and Aviv M. Weinstein*

They report that excessive cell phone usage leads to depression, anxiety, OCD, ADHD, alcohol abuse, cognitive-emotion regulation, impulsivity, impaired cognitive function, addiction to social networking, shyness and low self-esteem, sleep problems, reduced physical fitness, unhealthy eating habits, pain and migraines, reduced cognitive control and changes in the brain’s gray matter volume.

Cell phones, Teens and Mental Health

Two recent studies shed light on the negative psychological consequences of social media use.

There is no doubt that smartphone use has become pervasive in our society. In a 2018 Pew Research Center poll, 95 per cent of teens reported having access to a smart phone. Some 45 per cent of teens reported using the internet “almost constantly” (a number that has doubled compared to the 2014-2015 survey), while another 44 per cent said they go online multiple times per day.

The negative potential for social media was highlighted in two recent studies. In the first, researchers found that in a cohort of 6,595 U.S. adolescents, those who used social media more than three hours per day were at increased risk for developing mental health problems. The risk was principally seen for internalizing problems such feeling lonely, sad, depressed or anxious rather than for externalizing problems like acting out or behaviour difficulties.

The second study was an analysis of more than 12,000 teenagers in England. English teenagers were even more active on social media than their American counterparts. Two in three teens ages 15 to 16 used social media multiple times per day.

The researchers also found that teens who used social media multiple times per day were more likely to report psychological distress, less life satisfaction, less happiness and more anxiety than those who used it only weekly or less often. An interesting aspect of the study was that the negative effects of social media were more prominent in girls than boys. While both boys and girls showed an increase in psychological distress, the magnitude of the increase was higher in girls (18 per cent) than in boys (5 per cent).

Cell phones and mental health of students

Internal reflection

Physics is a deeply conceptual class. It’s not like English or History, where everyone already knows vast amounts of content before even entering. Students entering high school already knowing what a story is, what characters are, what a theme is, and what a moral is.

The human themes discussed by Shakespeare or Homer are universal. They are intuitively understood by even the least prepared of readers. Students may not know much about Elizabethan England, or ancient Greece, but they know what it means to be happy, sad, angry, or jealous. They know what it means for a character to fall in love, or to flee from their home.

When they read about a King entering a castle, and making a pronouncement to the citizens, students get it right away. Does any student ever erroneously think that “the pronouncement” is a person? That “the King” is a large object built out of wood and stone that someone lives in? That “the Castle” is a letter to be read? Of course not.

This is not so, however, with concepts in physics. Student entering a physics class often have no meaningful understanding of conservation laws, or Newton’s laws of motion. Most don’t understand why it is essential to differentiate between conservation of energy and conservation of momentum. When someone doesn’t know if a problem requires conservation of energy concepts, or kinematic equation concepts to solve a problem, that’s a like a person not knowing the difference between a King and a Castle. It is that basic.

Outside of AP Physics we usually are teaching from the ground level upwards.

No teaching method, homework assignment, or pedagogical technique has much effect on student performance – unless that student takes time to engage in internal mental reflection.

When students review at home what we learned in class,

When students think about what happened, and why it happened,

When students compare their preconceptions to what they have observed

only they are engaging in internal mental reflection.

If a student chooses not do this, then there is little a teacher can add. We can explain it for you, but we can’t understand it for you.

This is one reason why some students struggle. Doing classwork has only limited usefulness, unless one internally reflects on the subject.

How to be a good student

Chapter 12. Learning Through Reflection, by Arthur L. Costa and Bena Kallick

Learning Through Reflection

Google Scholar Search

Scholar.google.com Learning internal reflection

Scholar Google: Mental reflection

Math is the language of physics

 

Mathematics is the language of physics

Natural philosophy [i.e., physics] is written in this grand book – I mean the universe – which stands continually open to our gaze, but it cannot be understood unless one first learns to comprehend the language and interpret the characters in which it is written.

[The universe] cannot be read until we have learned the language and become familiar with the characters in which it is written. It is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word.

  • Galileo, Opere Il Saggiatore p. 171

Mathematics is the language of physics. Physical principles and laws, which would take two or even three pages to write in words, can be expressed in a single line using mathematical equations. Such equations, in turn, make physical laws more transparent, interpretation of physical laws easier, and further predictions based on the laws straightforward.

  • Mesfin Woldeyohannes, Assistant Professor, Western Carolina University

ἀεὶ ὁ θεὸς γεωμετρεῖ – Aei ho theos geōmetreî. God always geometrizes.

  • Plato, 400 BCE, classical Greece, as quoted by Plutarch in his The Moralia, Quaestiones convivales. (circa 100 CE)

Math is so useful in the real world that it’s eerie

There is a classic paper, The Unreasonable Effectiveness of Mathematics in the Natural Sciences, that it should be read even by high school students.

Wigner begins his paper with the belief, common among those familiar with mathematics, that mathematical concepts have applicability far beyond the context in which they were originally developed.

Based on his experience, he says “it is important to point out that the mathematical formulation of the physicist’s often crude experience leads in an uncanny number of cases to an amazingly accurate description of a large class of phenomena.”

Wigner then invokes the fundamental law of gravitation as an example. Originally used to model freely falling bodies on the surface of the earth, this law was extended on the basis of what Wigner terms “very scanty observations” to describe the motion of the planets, where it “has proved accurate beyond all reasonable expectations”.

Another oft-cited example is Maxwell’s equations, derived to model the elementary electrical and magnetic phenomena known as of the mid 19th century. These equations also describe radio waves, discovered by David Edward Hughes in 1879, around the time of James Clerk Maxwell’s death.

Wigner sums up his argument by saying that “the enormous usefulness of mathematics in the natural sciences is something bordering on the mysterious and that there is no rational explanation for it”. He concludes his paper with the same question with which he began:

The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve. We should be grateful for it and hope that it will remain valid in future research and that it will extend, for better or for worse, to our pleasure, even though perhaps also to our bafflement, to wide branches of learning.

  • The Unreasonable Effectiveness of Mathematics in the Natural Sciences. (2016, September 11). In Wikipedia, The Free Encyclopedia

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

Math is different from physics

Mathematics does not need to bother itself with real-world observations. It exists independently of any and all real-world measurements. It exists in a mental space of axioms, operators and rules.

Physics depends on real-world observations. Any physics theory could be overturned by a real-world measurement.

None of maths can be overturned by a real-world measurement. None of geometry can be.

Physics starts from what could be described as a romantic or optimistic notion: that the universe can be usefully described in mathematical terms; and that humans have the mental ability to assemble, and even interpret, that mathematical description.

Maths need not concern itself with how the universe actually works. Perhaps there are no real numbers, one might think it is likely that there is only a countable number of possible measurements in this universe, and nothing can form a perfect triangle or point.

Maths, including geometry, is a perfect abstraction that need bear no relation to the universe as it is.
Physics, to have any meaning, must bear some sort of correspondence to the universe as it is.

Why-is-geometry-mathematics-and-not-physics? Physics StackExchange, by EnergyNumbers

Related articles

What is mathematics, really? Is it made by humans or a feature of the universe? Math in art & poetry.

______________________________________

Thanks for reading. While you’re here see our articles on astronomybiologychemistryEarth sciencephysicsthe scientific method, and making connections to science through reading, books, TV and movies.

Teaching coding

coding-snippetTeaching coding:3 Steps to Becoming a Coding Teacher, By Grant Smith

http://www.edutopia.org/blog/3-steps-to-becoming-a-coding-teacher-grant-smith

2. Prepare Yourself and Your Classroom

Notice how I included resources above for adults to learn coding. That means you! I recommend that you first review your selected curriculum and then move on to the more complicated stuff. I highly recommend the Intro to CS and Intro to Programming courses on Udacity. You should also prepare for your class by answering the following questions:

  • What are your learning expectations for the students? (Check out these learning outcomes for the Khan Academy course as an example.)
  • Are your students learning computational thinking, computer science, or computer programming? (There is a difference. Check out Harvard research on computational thinking.)
  • What’s your classroom layout? (See my post for ideas.)
  • Will your students work at their own pace or at your pace?
  • Will students work through a curriculum, or will it be project based?
  • How will students collaborate?
  • How will students share their work with you, their peers, and the world?
  • How will student accounts be managed? Will you create them? Do you need parent or administrator permission?
  • Why should your students learn to code? (Students are more excited to learn when you are excited to teach. Check out the Top Ten Reasons to Code.)
  • How will you assess your students? (This PDF details some research on assessing computational thinking.)

3. Get Support

Just because anyone can learn to code online doesn’t mean that’s the best way to do it. Code.org’s research found that “students who are learning with the support of their teacher in a classroom setting complete courses more than those learning on their own” (Teachers Matter). We all know that for teachers to be successful, we need support. So rally the troops!

  1. Find a champion for your coding crusade. The higher level the champion is, the easier it will be for you to gain access to resources and spread the word about your 21st-century class.
  2. Get the community involved. Host an Hour of Codecommunity event. Last year, the Avondale Elementary School District held an Hour of Code event where the students taught their parents how to program.
  3. Build your PLN. Follow people on your favorite social network and ask for help. Some great hashtags are#CSK8, #KidsCanCode, and #AllKidsCode.
  4. Present to your governing board. Show them how your curriculum aligns to CCSS and builds 21st-century skills.

Jump Into 21st-Century Learning!

If you’ve already had successful experiences coding in your class, share them in the comments section of this post or on your PLN. If not, you may be asking the following questions:

  1. Will you know the answer to every question that your students will have?
  2. Will you feel well rested, prepared, and in control at all times?
  3. Will every class run without a hitch?

Answers: 1) No. 2) You wish. 3) In your dreams!

Will it be worth it? You better believe it! Now go make it happen!

___________________________________________________

15+ Ways of Teaching Every Student to Code
(Even Without a Computer)

Vicki Davis, http://www.edutopia.org/blog/15-ways-teaching-students-coding-vicki-davis

…While the Hour of Code is in December, Code.org hassuggested resources for educators, unplugged lessons (those not requiring computers), and tutorials to help you teach computer science to kids of all ages any time of the year….

  • Scratch is a programming game that can be downloaded or used on the Web and is supported by MIT. They’ve got a powerful Hour of Code tutorial where students can program a holiday card in their web browser.
  • Or, if you want options for other times of the year, use the one-hour “Speed Racer” activity to teach your students Scratch. Teachers can watch this tutorial video to learn how, visit ScratchED’s Hour of Code Ideas forum to ask questions, or search “Hour of Code” on the forum for lesson plans using everything from coordinate geometry to Latin. Scratch is considered acceptable for beginners. (Some educators use Snap, originally a version of Scratch but now written in Javascript that is supported by University of California at Berkeley. There are several alternatives to Scratch with a similar interface. Give this list to your IT department if there are technical reasons why you can’t run Scratch or Snap.)
  • Lightbot has a version on just about any platform and even has an online one-hour version. This puzzle game has a free version which lasts an hour but sells full versions on iTunes and Google Play. It teaches planning, testing, debugging, procedures, and loops.
  • Kodu is another programming tool that can be easily used on a PC or XBOX to create a simple game. There’s also a math curriculum. This is one method that Pat Yongpradit, Code.org’s Director of Education, used in his computer science classroom. (I’ve used it as well.)
  • Gamestar Mechanic offers a free version that you might want to use for your hour, but if you fall in love with it, the educational package allows teachers to track student progress, among other features. The company supports educators, and there’s also an Edmodo community that shares lesson plans and ideas for the tool, along withvideos and a must-see teacher’s guide.
  • GameMaker is an option if you want to make games that can be played in any web browser. The resources aren’t as comprehensive and the community isn’t vibrant, but this one has been around for a while and might be fun for a more tech-savvy teacher.
  • My Robot Friend is a highly-rated app according toCommon Sense Media. It costs $3.99, but no in-app purchases are required to go to higher levels.
  • SpaceChem is an interesting mix of chemistry, reading, and programming for age 12 and up. As students read the 10,000-word novelette, they have to solve puzzles by assembling molecules. SpaceChem created a helpful guide for educators. This tool is available for download on Steam and installation on Windows, Mac, and Ubuntu. (Download a free demo.)
  • CodeCombat is a multiplayer game that teaches coding. It’s free to play at the basic level, and students don’t have to sign up. This has the advantage that teachers don’t have to know computer science to empower learning in this programming. It’s recommended for age 9 and up. See theteacher guide for the information and standards covered in this game.
  • Minecraft.edu is an option that lets you install and use Minecraft in the classroom. While this does require some purchase and setup, Minecraft seems to be gaining in popularity among educators as an in-house, 3D world-programming environment that kids love. Minecraft.edu has a Google group and best practices wiki. (My son took a course at Youth Digital that taught him Java to mod Minecraft — while pricey, it was a great course.)
  • Do you want a board game for older children? Code Monkey Island is designed for children age 9 and up. This is a great addition to your game corner.

___________________________________________________


Tutorials Point

Tutorials Point originated from the idea that there exists a class of readers who respond better to online content and prefer to learn new skills at their own pace from the comforts of their drawing rooms. The journey commenced with a single tutorial on HTML in 2006 and elated by the response it generated, we worked our way to adding fresh tutorials to our repository which now proudly flaunts a wealth of tutorials and allied articles on topics ranging from programming languages to web designing to academics and much more.

https://www.tutorialspoint.com/index.htm

Programming Lego NXT robots

EV3Lessons.com by Seshan Brothers

Intro to programming Lego Mindstorms

nxtprograms.com By Dave Parker

The Writing Revolution

The Atlantic, October 2012

By Peg Tyre

in 2009, when Monica DiBella entered New Dorp, a notorious public high school on Staten Island, her academic future was cloudy. Monica had struggled to read in early childhood, and had repeated first grade. During her elementary-school years, she got more than 100 hours of tutoring, but by fourth grade, she’d fallen behind her classmates again. In the years that followed, Monica became comfortable with math and learned to read passably well, but never seemed able to express her thoughts in writing. During her freshman year at New Dorp, a ’70s-style brick behemoth near a grimy beach, her history teacher asked her to write an essay on Alexander the Great. At a loss, she jotted down her opinion of the Macedonian ruler: “I think Alexander the Great was one of the best military leaders.” An essay? “Basically, that wasn’t going to happen,” she says, sweeping her blunt-cut brown hair from her brown eyes. “It was like, well, I got a sentence down. What now?” Monica’s mother, Santa, looked over her daughter’s answer—six simple sentences, one of which didn’t make sense—with a mixture of fear and frustration. Even a coherent, well-turned paragraph seemed beyond her daughter’s ability. An essay? “It just didn’t seem like something Monica could ever do.”

For decades, no one at New Dorp seemed to know how to help low-performing students like Monica, and unfortunately, this troubled population made up most of the school, which caters primarily to students from poor and working-class families. In 2006, 82 percent of freshmen entered the school reading below grade level. Students routinely scored poorly on the English and history Regents exams, a New York State graduation requirement: the essay questions were just too difficult. Many would simply write a sentence or two and shut the test booklet. In the spring of 2007, when administrators calculated graduation rates, they found that four out of 10 students who had started New Dorp as freshmen had dropped out, making it one of the 2,000 or so lowest-performing high schools in the nation. City officials, who had been closing comprehensive high schools all over New York and opening smaller, specialized ones in their stead, signaled that New Dorp was in the crosshairs.

And so the school’s principal, Deirdre DeAngelis, began a detailed investigation into why, ultimately, New Dorp’s students were failing. By 2008, she and her faculty had come to a singular answer: bad writing. Students’ inability to translate thoughts into coherent, well-argued sentences, paragraphs, and essays was severely impeding intellectual growth in many subjects. Consistently, one of the largest differences between failing and successful students was that only the latter could express their thoughts on the page.

If nothing else, DeAngelis and her teachers decided, beginning in the fall of 2009, New Dorp students would learn to write well. “When they told me about the writing program,” Monica says, “well, I was skeptical.” With disarming candor, sharp-edged humor, and a shy smile, Monica occupies the middle ground between child and adult—she can be both naive and knowing. “On the other hand, it wasn’t like I had a choice. I go to high school. I figured I’d give it a try.”

New Dorp’s Writing Revolution, which placed an intense focus, across nearly every academic subject, on teaching the skills that underlie good analytical writing, was a dramatic departure from what most American students—especially low performers—are taught in high school. The program challenged long-held assumptions about the students and bitterly divided the staff. It also yielded extraordinary results. By the time they were sophomores, the students who had begun receiving the writing instruction as freshmen were already scoring higher on exams than any previous New Dorp class. Pass rates for the English Regents, for example, bounced from 67 percent in June 2009 to 89 percent in 2011; for the global-­history exam, pass rates rose from 64 to 75 percent. The school reduced its Regents-repeater classes—cram courses designed to help struggling students collect a graduation requirement—from five classes of 35 students to two classes of 20 students.

…[Why were the students previously failing?]

…. New Dorp students were simply not smart enough to write at the high-school level. You just had to listen to the way the students talked, one teacher pointed out—they rarely communicated in full sentences, much less expressed complex thoughts… Scharff, a lecturer at Baruch College, a part of the City University of New York, kept pushing, asking: “What skills that lead to good writing did struggling students lack?” …

Maybe the struggling students just couldn’t read, suggested one teacher.

A few teachers administered informal diagnostic tests the following week and reported back. The students who couldn’t write well seemed capable, at the very least, of decoding simple sentences. A history teacher got more granular. He pointed out that the students’ sentences were short and disjointed. What words, Scharff asked, did kids who wrote solid paragraphs use that the poor writers didn’t? Good essay writers, the history teacher noted, used coordinating conjunctions to link and expand on simple ideas—words like for, and, nor, but, or, yet, and so. Another teacher devised a quick quiz that required students to use those conjunctions. To the astonishment of the staff, she reported that a sizable group of students could not use those simple words effectively. The harder they looked, the teachers began to realize, the harder it was to determine whether the students were smart or not—the tools they had to express their thoughts were so limited that such a judgment was nearly impossible.

The exploration continued. One teacher noted that the best-written paragraphs contained complex sentences that relied on dependent clauses like although and despite, which signal a shifting idea within the same sentence. Curious, Fran Simmons devised a little test of her own. She asked her freshman English students to read Of Mice and Men and, using information from the novel, answer the following prompt in a single sentence:

“Although George …”

She was looking for a sentence like: Although George worked very hard, he could not attain the American Dream.

Some of Simmons’s students wrote a solid sentence, but many were stumped. More than a few wrote the following: “Although George and Lenny were friends.”

A lightbulb, says Simmons, went on in her head. These 14- and 15-year-olds didn’t know how to use some basic parts of speech. With such grammatical gaps, it was a wonder they learned as much as they did. “Yes, they could read simple sentences,” but works like the Gettysburg Address were beyond them—not because they were too lazy to look up words they didn’t know, but because “they were missing a crucial understanding of how language works. They didn’t understand that the key information in a sentence doesn’t always come at the beginning of that sentence.”

Some teachers wanted to know how this could happen. “We spent a lot of time wondering how our students had been taught,” said English teacher Stevie D’Arbanville. “How could they get passed along and end up in high school without understanding how to use the word although?”

…The Hochman Program, as it is sometimes called, would not be un­familiar to nuns who taught in Catholic schools circa 1950. Children do not have to “catch” a single thing. They are explicitly taught how to turn ideas into simple sentences, and how to construct complex sentences from simple ones by supplying the answer to three prompts—but, because, and so. They are instructed on how to use appositive clauses to vary the way their sentences begin. Later on, they are taught how to recognize sentence fragments, how to pull the main idea from a paragraph, and how to form a main idea on their own. It is, at least initially, a rigid, unswerving formula. “I prefer recipe,” Hochman says, “but formula? Yes! Okay!”

…Within months, Hochman became a frequent visitor to Staten Island. Under her supervision, the teachers at New Dorp began revamping their curriculum. By fall 2009, nearly every instructional hour except for math class was dedicated to teaching essay writing along with a particular subject. So in chemistry class in the winter of 2010, Monica DiBella’s lesson on the properties of hydrogen and oxygen was followed by a worksheet that required her to describe the elements with subordinating clauses—for instance, she had to begin one sentence with the word although.

Although … “hydrogen is explosive and oxygen supports combustion,” Monica wrote, “a compound of them puts out fires.”

Unless … “hydrogen and oxygen form a compound, they are explosive and dangerous.”

If … This was a hard one. Finally, she figured out a way to finish the sentence. If … “hydrogen and oxygen form a compound, they lose their original properties of being explosive and supporting combustion.”

As her understanding of the parts of speech grew, Monica’s reading comprehension improved dramatically. “Before, I could read, sure. But it was like a sea of words,” she says. “The more writing instruction I got, the more I understood which words were important.”

Classroom discussion became an opportunity to push Monica and her classmates to listen to each other, think more carefully, and speak more precisely, in ways they could then echo in persuasive writing.

PEG TYRE is the director of strategy at the Edwin Gould Foundation and the author of The Good School: How Smart Parents Get Their Kids the Education They Deserve.
http://www.theatlantic.com/magazine/archive/2012/10/the-writing-revolution/309090/

Interactive lecture demonstrations

from Interactive Lecture Demonstrations:

Created by Dorothy Merritts, Robert Walter (Franklin & Marshall College), Bob MacKay (Clark College). Enhanced by Mark Maier with assistance from Rochelle Ruffer, Sue Stockly and Ronald Thornton

What is an Interactive Lecture Demonstration?

Interactive Lecture Demonstrations introduce a carefully scripted activity, creating a “time for telling” in a traditional lecture format. Because the activity causes students to confront their prior understanding of a core concept, students are ready to learn in a follow-up lecture. Interactive Lecture Demonstrations use three steps in which students:

  1. Predict the outcome of the demonstration. Individually, and then with a partner, students explain to each other which of a set of possible outcomes is most likely to occur.
  2. Experience the demonstration. Working in small groups, students conduct an experiment, take a survey, or work with data to determine whether their initial beliefs were confirmed (or not).
  3. Reflect on the outcome. Students think about why they held their initial belief and in what ways the demonstration confirmed or contradicted this belief. After comparing these thoughts with other students, students individually prepare a written product on what was learned.

Why Use Interactive Lecture Demonstrations

Research shows that students acquire significantly greater understanding of course material when traditional lectures are combined with interactive demonstrations. Each step in Interactive Demonstrations – Predict, Experience, Reflect – contributes to student learning.

Prediction links new learning to prior understanding. The experience engages the student with compelling evidence. Reflection helps students identify and consolidate that they have learned.

More on why use interactive demonstrations

How to Use Interactive Lecture Demonstrations in Class

Effective interactive lecture demonstrations require that instructors:

  • Identify a core concept that students will learn.
  • Chose a demonstration that will illustrate the core concept, ideally with an outcome different from student expectations.
  • Prepare written materials so that students can easily follow the prediction, experience and reflection steps.

More on how to use Interactive Demonstrations in class

__________________________________________

Using PhET interactive labs with interactive lecture demonstrations

Using PhET as an (Interactive) Lecture Demonstration