KaiserScience

Start here

Discovering lost continents under the Earth

Never mind those stories about a “lost continent of Atlantis.” True, there likely is a lost island that is the basis of the Atlantis tale. Yet we know for a fact that there is no sunken Atlantean continent on the bottom of the Atlantic ocean or Mediterranean Sea.

We can now literally see the entire bottom of the Atlantic seafloor in high resolution, and there is no missing continent.

But although those tales of Atlantis as a lost continent are incorrect that doesn’t mean that some kind of amazing lost continents don’t exist. In fact, several do and we’re going to learn about them today!

We normally think of the Earth’s interior as looking like this:

internal%20earth%20structure

But now we know there are many more details:

To review what a continent is, and how one is defined, see Continents and plate tectonics

 

The Farallon Plate

Some text from Farallon plate, Karin Sigloch *08, Art of Science 2009

This is a three-dimensional structure of the Earth’s mantle under western North America, down to a depth of 1500 kilometers.

The Pacific coastlines and mountainous western states are plotted above an expansive, seismically fast structure, colored in purple, known as the Farallon plate.

It is a vast piece of ancient ocean floor that has been slowly sinking back into the mantle over the past 150 million years.

The tectonic stresses caused by the Farallon’s movements deep underground have thrust up the mountain peaks and plateaus of the West. They continue to drive its volcanoes and earthquakes, thus shaping the surface appearance of an entire continent.

The Farallon Plate was an ancient oceanic plate that began subducting under the west coast of the North American Plate – then located in modern Utah – as Pangaea broke apart during the Jurassic period.

It is named for the Farallon Islands, which are located just west of San Francisco, California.

Over time, it was subducted under the southwestern part of the North American Plate. The remains of it today are

the Juan de Fuca, Explorer and Gorda Plates, subducting under the northern part of the North American Plate;

the Cocos Plate subducting under Central America;

and the Nazca Plate subducting under the South American Plate.

http://en.wikipedia.org/wiki/Farallon_Plate

‘Lost’ Tectonic Plate Found Beneath California
http://www.livescience.com/27994-lost-tectonic-plate-california.html

How do we see inside the Earth

 

Continents of the Underworld

Large low-shear-velocity provinces, or LLSVPs

continents of underworld Large low shear velocity provinces LLSVPs

By Olena Shmahalo at Quanta Magazine, source data from Sanne Cottaar.

 

In Continents of the Underworld Come Into Focus, Quanta Magazine, Josjua Sokol writes

Decades ago, scientists first harnessed the echoes of earthquakes to make a map of Earth’s deep interior. They didn’t just find the onion layers you might remember from a grade school textbook — core and mantle covered by a cracked crust. Instead, they saw the vague outlines of two vast anomalies, unknown forms staring back from the abyss.

Over the years, better maps kept showing the same bloblike features. One huddles under Africa; the other is beneath the Pacific. They lurk where the planet’s molten iron core meets its rocky mantle, floating like mega-continents in the underworld.

Their highest points may measure over 100 times the height of Everest. And if you somehow brought them to the surface, God forbid, they contain enough material to cover the entire globe in a lava lake roughly 100 kilometers deep….

In these regions, earthquake waves seem to slow down, suggesting that the blobs are hotter than the surrounding mantle.

How do we know this? Rock expands when heated. That causes waves to travel sluggishly through warm regions, said Garnero, like the slower vibrations moving through a loose guitar string.

The slowing waves gave these features their formal name: large low-shear-velocity provinces, or LLSVPs — an unmagical abbreviation that may have contributed to the topic’s low profile. “We are also to blame,” said Sanne Cottaar, a seismologist at the University of Cambridge, “for misnaming this feature so badly.”

Are LLSVPs the remains of the impact that created the Moon?

Intro TBA

Remains of impact that created the Moon may lie deep within Earth, Paul Voosen, Science, 3/23/2021

A remnant of a protoplanet may be hiding inside Earth, Nicoletta Lanese, Live Science, 3/29/2021

Continent-Sized Remnants Of An Alien World May Be Buried Deep Within Earth, Mary Papenfuss, HuffPost Science, 3/29/2021

Giant Impact Origin for the Large Low Shear Velocity Provinces, Q. Yuan , M. M. Li1, S. J. Desch1 and B. Ko, 52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548)
,

Learning Standards

tba

pH diets, health, and homeostasis

Students need to be aware of pseudoscience diets. Some of these claim that by eating more acidic or basic foods you can change your body’s pH level, and thus treat disease.

Not only is this entire idea incorrect, if a person does change their pH beyond even a tiny bit then they will almost immediately die. Changing one’s body pH is almost impossible, but when it happens it is fatal,

What are acids and bases? Acids are bases are complimentary types of chemicals. Acids perform one kind of chemical reaction; bases perform the opposite action. Learn more here about acids and bases.

Here’s the critical point: When it comes to living, what matters is whether acids and bases are working in a safe balance. Cells only work correctly in a very narrow range of conditions.

Too much or too little of any molecule, and they begin to malfunction or die. Homeostasis is the body’s way of keeping chemicals  in a safe, dynamic balance.

PHYSIOLOGICAL PH FOR DUMMIES

Alkaline Diet, SkepDic

Alkaline Diet, RationalWiki

pH Mythology: Separating pHacts from pHiction

Alkaline Water Surges Despite Lack of Evidence

Alkaline food, McGill University

Chemistry lesson for The Food Babe… and everyone else #19: Alkaline Diets Do Not Cure Disease, McGill University

 

What’s the role of a teacher? Thoughts on the social emotional learning trend

An essay on the role of a teacher today, and the wisdom of the standardized social and emotional learning phenomenon.

SEL Social and Emotional Learning

image from casel.org

By Nick Parsons, Chemistry Teacher. 12/18/2019

Nick author

In wrapping up and reflecting on the 2019 year, I’ve been thinking about school a lot… too much. Overall, teaching has been mostly good to me.

I liked school as a kid for the common, superficial reasons, like socializing and doing extracurriculars (by extracurriculars I mean sports, not all the other stuff I “did” to pad up a resume).

I REALLY liked school for deeper, private, and more personal reasons, such as being a place where I had the opportunity to challenge myself and either: (1) fail, reflect, and grow to do something more challenging or (2) succeed, reflect, and grow to do something more challenging.

For reasons I don’t understand, satisfying the incessant, burdensome need to challenge myself and be better always, and probably forever will, feel better than almost anything else.

On a day to day basis, I slept through most of my school day because it was usually boring and school/ practice/ homework was a 7:20am-9pm job, with 2 hours somewhere in there to eat, shower, and take a break to collect myself to get through the current day, in preparation for the next day. The majority of days I would feel stressed, tired, and mostly, just content – not overly happy, not overly sad. I certainly was not a daily ray of sunshine.

I LOVED all of the teachers I had in high school, but I can’t remember any going out of there way to help me sort out, identify, regulate, reflect, or otherwise support my social-emotional state… and that was totally fine. Honestly, if they did it would be weird. Plus, I trusted they were all conscionable, decent humans and if there was something seriously wrong with me, I bet they’d notice and reach out.

Not only that, I knew who the adults were who would support me as a young person. They were the same people who held me to high expectations, saw me at my highs and lows, would call me out if I was lacking focus or being a jerk. It was all love and it was real.

I liked school because it was satisfying, and I got through it because I was hooked on that feeling and I had genuine, supporting people that would afford me opportunities to challenge myself, hold me accountable to engage with these opportunities, and support me, if necessary, in adapting to these challenges so I could be better equipped to face them in the future.

I liked school (and coaching) SO much, I decided to do it, not as a job, but as a vocation (there is a difference). My average work day is essentially the same as in high school. During the hours of 7am-9pm I go to school, then coach, then come home to lesson plan or grade. Somewhere in there, I get two hours to eat, shower, and collect myself to get through the current day, in preparation for the next.

The majority of days I feel stressed, tired, and mostly, just content – not overly happy, not overly sad. I’m a little more outwardly positive and “sunshiny” because I don’t want to be that weird, mopey coworker, and students are more productive if I, at least, give the outward appearance of being happy and enthusiastic. Thankfully, I usually am. Somedays, I have to pretend, But mostly, my students can read my by the end of a semester, understand how I’m feeling, and they’re usually cool and respectful of it.

I’m a firm believer in creating fair, well thought out policies and adhering to them with fidelity. I teach chemistry – not because I have some deep, inherent passion for it – but because it’s “hard”, demanding, and doesn’t require much background knowledge – almost every student starts on an even playing field of knowing pretty much nothing. It’s the kind of subject where if you work hard, challenge yourself, fail, and reflect, you do REALLY well in. And nothing feels better to me when students do really well.

We definitely do not take content time aside to share our feelings, but I for sure will ask students how their days are going, what their other classes are like, how their game went last night, if they were able to get sleep after their rehearsal last night. BUT only if they got the work asked of them first.

Once in a while I remind the children that they have my unconditional support. Far more often, though, I’m reminding them that school is like a job, effort doesn’t matter much to me because it isn’t a material thing I can grade, and in my room, to do well, they need to be producing the best work they can. If they don’t, they’ll know when it’s graded. And no, I don’t allow revisions or retests. My favorite teacher’ism might be, “Hey now, don’t get mad about it, just get better.”

In general, I have good relationships with students. I hear through the grapevine and through survey data that they like my class, that they know I care about what I’m doing, I put in a lot of effort into my job, and they admit that they learn some chemistry by the end of it.

I’d be omitting the truth if I didn’t say I also constantly badger kids to put their phones away, cold-call the kids sleeping in class, cold-call the kids who are otherwise distracted, or raise my voice to talk over students talking over me. And I definitely piss off a kid once in a while with my daily urgency for order, focus, and productivity above having “fun”.

If a kid gets disrespectful toward me after I hold them accountable for violating clearly laid out classroom policies that are fair, constantly revised, and regularly communicated, I don’t ask them how they’re feeling or worry about how I can help them regulate their emotions. I got 20+ other kids that need to learn! I don’t have the time or capacity for that. Plus, I don’t need to: I’m a teacher, they’re students. On a professional level, in no way are we equals.

They get another chance, in that moment, to do better. If they can’t do that, well they can talk about it with an administrator, or at home with their family after I notify whoever is taking care of them that I’m not tolerating that kind of nonsense. Usually the kid gets better after that, sometimes they don’t. While I would like better outcomes in these situations, I’m not going to take on that burden of altering their psychology and modifying their behaviors. I’m a teacher, not a psychologist or a therapist. That’s not my place.

Since I got into teaching, all I’ve been listening to is this SEL (social emotional learning) thing and how I’m supposed to teach students how to recognize and regulate their emotions to feel good all the time. But again, I teach chemistry, no one taught me or trained me how to be a therapist.

Most schools push for this SEL thing, but there are only 6’ish hours in a school day. I’ve observed, substituted, and taught in 5 schools in the past 5 years. I’ve noticed that SEL pushes out other time-consuming tasks like content and discipline.

I’ve also noticed and have crossed paths with plenty of literature saying rampant depression is ailing teens, in-person communication is bizarre for them, and that they are encouraged to fight for their right to feel good all of the time. Plus, I’ve had a lot of students who are far more interested in me being their friend rather than their teacher. Like, no… that’s super weird, not to mention unprofessional.

I’ve also witnessed, experienced, heard about, and read about early career teachers leaving the profession ENTIRELY from burnout, veteran teachers saying “school wasn’t always like this”, and almost unanimously, by all kinds of teachers, some level of regret for even entering the profession. I was warned by SO many teachers to not enter the profession when I made the decision to. That’s not hard, qualifiable, or quantifiable data, but it was a lot – trust me!

I think I was better off in school as a student than my current students that I teach. I went to school to learn, because that was the whole purpose of school. I definitely didn’t go to feel good, and it wouldn’t matter! Going to school wasn’t a “choice” thing for me – I went because it was my job. I got the sense that it was my job and I would work hard during it because that was prioritized more by my teachers and parents than them worrying about how my social-emotional state was.

It feels backwards now. Every year, I get the sense students think my role in the room is to be some entertaining, funny guy that is supposed to make them feel good and never make them feel guilty, ashamed, embarrassed, or like they’re doing a bad job. It’s not my goal as a teacher for kids to feel that way, and it’s not something I particularly enjoy, but yah, that’s going to happen. School is hard, and if it isn’t I don’t know if we could define whatever “it” is as school.

And I know why they feel this way. Social-emotional learning is the new “in” thing. I suspect they’re interpreting the message from SEL as, “Yes, getting good grades is important, but definitely not as important as feeling good.”

This is sad, because I think we’re robbing kids of opportunities to intrinsically “feel”. Instead, unqualified, therapist like, social-emotional focused teachers (like myself) are unintentionally pushing these half-baked, extrinsically sourced emotions onto kids. Then, when they find themselves in situations where intrinsic, genuine, and powerful emotions rise up, they’re not equipped with dealing with them because they haven’t been put in organic situations to deal with them independently.

I also worry that this constant expectation about how to feel and in what situations is making students (and plenty of adults) abhorrently intolerant to events, people, or actions that make them “feel” bad. I’m not saying people should never feel offended, mad, or hurt in their dealings with people and events, but there needs to be less pressure on people to HAVE to feel certain ways.

People make mistakes and upset other people. It happens, and I don’t think it’s going to stop happening while humans roam the Earth. But if we’re encouraged to reject anything that upsets or offends us in lieu of experiencing the myriad of emotions that naturally emerge in these situations, the opportunity to develop self-regulation, empathy, and perspective taking is in danger of being lost. Further, the inclination and need to reflect upon, think critically about, and consider future actions in regards to whatever it was that is upsetting becomes unnecessary and unimportant. Absentmindedly rejecting sources of negative emotions bring too hasty of closure.

And I think that is happening everywhere, especially in classrooms. Because emotions have become so embedded in the teaching profession, the line between what is personal and professional and how to feel about a person or event are becoming blurred. My biggest fear is that demanding expectations, conduct policies, and rigor, the stuff that makes school “school”, become villainous ideas that can be rejected and attacked.

I dunno. This SEL thing is complicated. But I liked how I went through school as a student, and I know I’m better for it. I’m really proud of who I’ve become and what I do and school was a big part of that.

I also know that whatever I do as a teacher, it’s going to be focused on:

1. Enabling my students to be equipped to be successful in the real world, and…

2. Providing them reasonably challenging obstacles, a focused environment to work hard in, and several opportunities to achieve something that they thought was beyond their current capacities, and…

3. Most importantly, to get them to FEEL, GENUINE satisfaction and joy at being successful, in SOMETHING. It only takes once to get hooked to that feeling.

Long story short, I like going to my teacher job to just teach because it is simple and rewarding. I think my students benefit the most from that as well.

 

Physics Hanukkah Fun

A goal of Social Studies is to expose students to the diversity of ethnic, religious, and cultural observances in our world. The College, Career, and Civic Life (C3) Framework for Social Studies State Standards notes that students should be able to describe how religions are embedded in culture and cannot only be isolated to the “private” sphere, and identify which religious communities are represented or obscured in public discourse.

A goal of science education is to see how basic laws of nature allow us to understand all phenomenon in our physical universe, from the simplest (fire and candles) to the most complex (how stars work.)

During the holiday season many science teachers do something fun on the physics of Christmas (Google that; thousands of results.) Yet there are more religions than Christianity and more phenomenon related to holidays. In the spirit of science and multiculturalism here we can look at the physics and chemistry of Hanukkah.

What is Hanukkah about?

Hanukkah is a minor Jewish holiday. It doesn’t come from the Hebrew Bible but instead from the book of Maccabees, part of the Jewish apocrypha. It is also known as Hag ha’urim, the Festival of Lights.

Hanukkah is a Hebrew word meaning “dedication.” It refers to the eight-day celebration during which Jews commemorate the victory of the Maccabees over the Hellenistic Syrians in 165 B.C.E. and the subsequent rededication of the Temple in Jerusalem. Hanukkah  is specifically about countering antisemitism and was the first successful war for religious freedom.

Celebrations center around the lighting of the hanukkiyah (menorah,) foods prepared in oil, including latkes (potato pancakes) and sufganiyot (jelly doughnuts), songs and games. – Intro to Hanukkah

The Hebrew name Maccabee means “hammer”, and referred first to a leader of the revolt, Judas, the third son of Mattathias.

Capillary action

During the holiday Jewish people light a Chanukah menorah  מנורת חנוכה, also called a Ḥanukiyah חַנֻכִּיָּה.

The wick is above the oil, drawing fluid up the wick through capillary action. What exactly is capillary action?

Hanukiyah Chanukah oil candle menorah

Capillary action & molecule forces

Oil is drawn up through capillary action, also called wicking.

This is a tale of two competing forces:

There is an adhesive force between the oil molecules and the cotton molecules.

And there is an intermolecular/cohesive force between the oil molecules.

Cohesion = ability of like molecules to stick together

Adhesion = ability of dissimilar molecules to stick together

cohesion and adhesion forces

from Bioninja

When the adhesion force > cohesion force then the oil molecules are slowly pulled into the wick.

capillary action and surface tension

From Hyperphysics, Surface tension

The following explanation is adapted from the discussion by Sean Snider, on Quora.

A fluid such as heating oil will tend to flow upwards against gravity due to capillary motion.

The individual atoms in the oil will interact with the fiber atoms to cause adhesion.

The oil atoms will bump into the fiber atoms – and move upwards due to intermolecular forces.

The difference in charge between the two types of atoms causes them to repel in all directions, including up.

The oil atoms will keep moving up – unless the forces between them cause them to clump together so that intermolecular forces weaken.

In that case their collective mass is too much to repel the force of gravity.

Typically the density of the fiber itself prevents the oil particles from clumping enough to reach this threshold. Thus they continue to move upward.

This allows the oil to reach the top of the wick and burn.

Instead of the fiber burning quickly, the oil burns.

(Some of the fiber also burns, but much less quickly.)

Capillary action student activities

Wick lab/game! sciensation.org

Capillary action and diffusion lab

Lights, Camera, (Capillary) Action! Scientific American

Convection & temperature differentials

The heat from the flame warms up the small olive oil vessels, below.

Those vessels are often transparent.

Arched oil Chanukah menorah

That heat causes a temperature differential: warmer oil at the top and cooler oil at the bottom.

This would cause convection and/or turbulence in the fluid.

This should be visible if we record it with a high speed, high-resolution smartphone camera.

Convection, turbulence, and related topics are usually left out of high school physics curriculum, so this might be a fun way to introduce it.

Heat convection GIF

Experiment: Add a drop of coloring into oil. Light the wick.
Then we can visually observe the convection currents.

Dreidel physics

A dreidel (Yiddish: דרײדל‎) or sevivon (Hebrew: סביבון) is a four-sided spinning top, played by children during the Jewish holiday of Hanukkah. Contrary to popular belief, this toy is not part of the Hanukkah story. It is a Jewish variant on the teetotum, a gaming toy found in many European cultures.

Through use and observation of a dreidel students may be inspired to understand how it works, which requires knowledge of angular momentum, rotational motion, gyroscopes, and precession.

One idea for class use is to record the motion with a high speed camera, and then play the footage back in slow motion, to reveal details of motion that would not be clearly visible to the naked eye.

Let’s take a look at Extreme High-Speed Dreidel Physics by Alexander R. Klotz:

… a dreidel is an example of a spinning top, a source of extremely difficult homework problems in undergraduate classical mechanics related to torque and angular momentum and rigid body motion and whatnot. I was chatting with a theorist I know who mentioned that it would be fun to calculate some of these spinning-top phenomena for the dreidel’s specific geometry (essentially a square prism with a hyperboloid or paraboloid base), and I suggested trying to compare it to high-speed footage [1000 frames per second] ….

dreidel rotation and precession

Check out the article and videos here.

Related dreidel topics to investigate

What keeps spinning tops upright? Ask a Mathematician/Physicist

What is precession? It is a change in the orientation of the rotational axis of a rotating body. In geometry we would say that if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis.

Precession (Wikipedia)

Dreidels also follow the law of conservation of angular momentum. We learn more about that in Angular momentum

And a dreidel itself is similar to a gyroscope.
Gyroscope precession GIF

The statistics of dreidel motion

Are dreidels fair? In other words, does the average dreidel have an equal chance of turning up any one of its four sides? Dreidel Fairness Study

Ultra High Speed Physics.

You’re not a mad scientist unless you ask questions like “Imagine a game of dreidel with a 60-billion-RPM top….” Focus: The Fastest Spinners. APS Physics

How is the holiday spelled? ELA connections

Why write “Hanukkah” instead of “Chanukah” – surely one spelling is right and the other is wrong? The reason for the spelling confusion is the limitations of the English alphabet. Hanukkah is a Hebrew word (חנוכה)

That first Hebrew letter of this word, ח , has a guttural sound. This sound used to exist in ancient English but doesn’t exist in modern English. The modern pronunciation of this letter is a voiceless uvular fricative (/χ/)

As such there is no one correct-and-only way to transliterate this letter. Over the past 2 centuries four ways have developed:

KH – Khanukah (used in old fashioned translations of Yiddish)

CH – Chanukah

H – Hanukkah (the extra ‘k’ is added just to make it 8 letters long.)

H – Ḥanukah (notice the H with a dot under it.)

Each of these is equally valid.

History, art, and social justice connections

Hanukkah and the Maccabees have been a common theme in classical Christian art, sculpture, and music. The story of the Maccabees is a part of Western Civilization through both Jewish and Christian culture.  In this article one can see the art, music, and sculpture of Hanukkah.

On a related social justice note, a big part of being anti-racist is listening to voices. Make space to learn from the lived experiences of our students, their families, and their communities.  As such I would like to share this:

Hanukkah is about countering antisemitism: Be aware of Hanukkah Erasure.

Learning Standards

College Board Standards for College Success in Science

ESM-PE.1.2.1 Describe and contrast the processes of convection, conduction and radiation, and give examples of natural phenomena that demonstrate these processes.

ESM-PE.1.2.1c Use representations and models (e.g., a burning candle or a pot of boiling water) to demonstrate how convection currents drive the motion of fluids. Identify areas of uneven heating, relative temperature and density of fluids, and direction of fluid movement.

Next Generation Science Standards

MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Massachusetts Science and Technology/Engineering Curriculum Framework

7.MS-PS3-6 (MA). Use a model to explain how thermal energy is transferred out of hotter regions or objects and into colder ones by convection, conduction, and radiation.

College, Career, and Civic Life (C3) Framework for Social Studies State Standards

College, Career, and Civic ready students:

D2.Rel.4.9-12: Describe and analyze examples of how religions are embedded in all aspects of culture and cannot only be isolated to the “private” sphere.

D2.Rel.12.9-12: Identify which religious individuals, communities, and institutions are represented in public discourse, and explain how some are obscured.

Transliteration of Hebrew letters

Library of Congress (USA) ALA-LC Romanization Tables

Why Transliteration Matters

 

Should schools have Blizzard Bags during snow days?

The idea behind “blizzard bags” and similar programs is to provide an alternative to making up school days missed due to weather disruptions or other unplanned school closures. The MTA Board has some serious concerns about blizzard bags.

school bus snow closings

Image from wwjnewsradio.radio.com

Share your thoughts on ‘blizzard bags’, MTA

In February, we asked MTA members for their thoughts on what the Department of Elementary and Secondary Education refers to as “alternative structured learning day programs” — otherwise known as “blizzard bags.” Your input will help guide our activism on this matter.

We asked, you answered: Your ‘blizzard bag’ responses. MTA

The “Blizzard Bags” program that allowed Massachusetts students to do class work at home during a winter storm and not have to make up the day in the summer comes to an end with this academic year.

The Massachusetts Department of Elementary and Secondary Education announced in June that it was discontinuing the Alternative Structured Learning Day Program, commonly known as “Blizzard Bags,” in fall 2020. It based its decision on a review of the “development and implementation of these programs.”

Some parents argued that “Blizzard Bags” could not take the place of a full day of school with face-to-face instruction or adequately address the needs of students on Individualized Education Programs.

Also, the Massachusetts Teachers Association voiced “serious concerns” about “Blizzard Bags” as a means of making up for a lost day of classroom instruction.

In the fall of 2018, the state Department of Elementary and Secondary Education established a working group to review the policy. Representatives from the Massachusetts Teachers Association participated, along with representatives of administrators from 10 Massachusetts school districts.

“The decision to discontinue the use of Alternative Structured Learning Day Programs is based upon a variety of factors, including concerns about equitable access for all students,” Jeffrey C. Riley, commissioner of Elementary and Secondary Education, stated on the state DESE website on June 27. “In addition to making every attempt to reschedule school days lost due to inclement weather, leaders should consider holding the first day of school prior to Labor Day. Other possibilities include scheduling a one-week vacation in March instead of week-long vacations in February and April.”

‘Blizzard Bags’ to be dropped by Massachusetts schools after this winter. MassLive.com

But here’s a question that almost no one seemed to even ask: Do snow days actually affect a student’s learning? This study claims that they don’t:

“Snow days don’t subtract from learning”

School administrators may want to be even more aggressive in calling for weather-related closures. A new study conducted by Harvard Kennedy School Assistant Professor Joshua Goodman finds that snow days do not impact student learning. In fact, he finds, keeping schools open during a storm is more detrimental to learning than a closure.

The findings are “consistent with a model in which the central challenge of teaching is coordination of students,” Goodman writes. “With slack time in the schedule, the time lost to closure can be regained. Student absences, however, force teachers to expend time getting students on the same page as their classmates.”

Goodman, a former school teacher, began his study at the behest of the Massachusetts Department of Education, which wanted to know more about the impact of snow days on student achievement. He examined reams of data in grades three through 10 from 2003 to 2010. One conclusion — that snow days are less detrimental to student performance than other absences — can be explained by the fact that school districts typically plan for weather-related disruptions and tack on extra days in the schedule to compensate. They do not, however, typically schedule make-up days for other student absences.

The lesson for administrators might be considered somewhat counterintuitive. “They need to consider the downside when deciding not to declare a snow day during a storm — the fact that many kids will miss school regardless, either because of transportation issues or parental discretion. And because those absences typically aren’t made up in the school calendar, those kids can fall behind.”

Goodman, an assistant professor of public policy, teaches empirical methods and the economics of education. His research interests include labor and public economics, with a particular focus on education policy.

Snow days don’t subtract from learning. The Harvard Gazette

Flaking Out: Snowfall, Disruptions of Instructional Time, and Student Achievement, by Joshua Goodman, Harvard Kennedy School of Government, April 30, 2012

Flaking Out: Snowfall, Disruptions of Instructional Time, and Student Achievement

Survivorship bias and why people think cavemen were a thing

One thing that almost everyone knows about the evolution of humans is that our ancestors were “cavemen.” They lived in caves, we have found many of their fossils there, so obviously, right?

Cavemen Caveman

Cavemen at National Museum of Natural History by mbell1975, Flickr

From a discussion on Quora

Is the idea of cavemen exaggerated? Because it seems like there are not a lot of caves in the world. Cavemen couldn’t live in caves that don’t exist.

Jeff Lewis, an aerospace engineer, replies, enlightening us both on the evolution of humans, but also on the concept of suvivorship bias. (This is one kind of cognitive bias.)

Let me start with a story that at first might not seem related. Back in WWII, the U.S. Army Air Force wanted to add armor to airplanes to increase their survivability. But, since airplanes need to be light enough to fly and carry a useful load, they had to figure out the best locations to add armor, where they could get the most ‘bang for the buck’. So, when airplanes returned to their air bases, they started recording where all the bullet holes and damage were located. If you compiled it all onto a single map, you’d end up with something like this:

survivorship bias error WWII airplane bullet holes

The intuitive answer that most people seem to jump to is that the areas with the most bullet holes are the areas getting shot the most, and that’s where the armor should go.

But the real answer is that the distribution of hits across all the planes was fairly uniform, but planes that were getting hit in the engines or cockpit never made it back home.

The data being compiled back at the air bases was biased towards the survivors, and so this phenomenon is known, appropriately enough, as survivorship bias. The best places to add armor were in fact the engines and cockpits.

So, when it comes to finding bones from our own ancestors/cousins, the finds are subject to the same type of bias. Our ancestors lived and died all over their habitats, but most of their remains have since decomposed. You can’t find remains that no longer exist. The remains that have persisted to the present day are those in locations that shielded them from scavengers and decomposition. One such location is caves.

So, we find so many human and pre-human remains in caves not because they were particularly fond of living there, but because caves were better at preserving their remains than other locations our ancestors lived. However, early finds of ancestral human remains in caves led to the impression that that’s where they were living, and that initial impression has persisted in the general public ever since.
https://www.quora.com/Is-the-idea-of-cavemen-exaggerated-Because-it-seems-like-there-are-not-a-lot-of-caves-in-the-world-Cavemen-couldn-t-live-in-caves-that-don-t-exist

See also

The Counterintuitive World

The nature of time

What is time?

What is time? Where does time come from?

In what way is time really something objective? (something actually out there?)

In what ways is time not objective? (so it would be just a way that humans use to describe our perception of the universe)

What is time?

 

Why does time never go backward?

The answer apparently lies not in the laws of nature, which hardly distinguish between past and future, but in the conditions prevailing in the early universe.

The Arrow of Time, Scientific American article. David Layzer

Is there a relationship between time and the second law of thermodynamics?

Before reading further, understand that these topics require at least some familiarity with the laws of Thermodynamics

“According to many, there might be a link between what we perceive as the arrow of time and a quantity called entropy…. [but] as far as we can tell, the second law of thermodynamics is true: entropy never decreases for any closed system in the Universe, including for the entirety of the observable Universe itself. It’s also true that time always runs in one direction only, forward, for all observers. What many don’t appreciate is that these two types of arrows — the thermodynamic arrow of entropy and the perceptive arrow of time — are not interchangeable.”

No, Thermodynamics Does Not Explain Our Perceived Arrow Of Time, Starts With A Bang, Ethan Siegel, Forbes

No, Thermodynamics Does Not Explain Our Perceived Arrow Of Time

Is time (and perhaps space,) quantized?

Ethan Siegel leads us in a fascination discussion:

The idea that space (or space and time, since they’re inextricably linked by Einstein’s theories of relativity) could be quantized goes way back to Heisenberg himself.

Famous for the Uncertainty Principle, which fundamentally limits how precisely we can measure certain pairs of quantities (like position and momentum), Heisenberg realized that certain quantities diverged, or went to infinity, when you tried to calculate them in quantum field theory….

It’s possible that the problems that we perceive now, on the other hand, aren’t insurmountable problems, but are rather artifacts of having an incomplete theory of the quantum Universe.

It’s possible that space and time are really continuous backgrounds, and even though they’re quantum in nature, they cannot be broken up into fundamental units. It might be a foamy kind of spacetime, with large energy fluctuations on tiny scales, but there might not be a smallest scale. When we do successfully find a quantum theory of gravity, it may have a continuous-but-quantum fabric, after all.

Are Space And Time Quantized? Maybe Not, Says Science

Is time quantized? In other words, is there a fundamental unit of time that could not be divided into a briefer unit?

Even In A Quantum Universe, Space And Time Might Be Continuous, Not Discrete

Time’s Arrow (may be) Traced to Quantum Source: A new theory explains the seemingly irreversible arrow of time while yielding insights into entropy, quantum computers, black holes, and the past-future divide.

Theoretical physics: The origins of space and time

 

Why learn math?

Mathematics Geometry by Inga Nielsen Alex Landa Shutterstock

 

Why learn math? When are going to use this in real life?

When students ask “when will we ever need this in real life?” they often aren’t actually being curious about their future. They are actually just unhappy with being assigned work in the present. But some students truly do want to learn the answers to this question – and teachers, one would hope – should know answers as well. And there are several answers to this question, not just one.

I. First we should recognize that this is an unfair question. Douglas Corey, at Brigham Young University, writes:

In truth, the when-will-I-use-this question is unfair for the teacher. She doesn’t know when you will (or even might) use it (except on the exam and in the next course in the sequence). She might explain how other people have used it, but, as we saw above, that response is not convincing. The difficulty in answering this question lies with an implicit assumption hidden beneath the question. The student has an idea of the kinds of situations that she will encounter in her life, and when the response from the teacher doesn’t apply to any of these situations, the mathematics seems useless. But it is fraudulent to assume that we know at a moment of reflection the kinds of situations in which we might use something. Why? Because we typically don’t know what we don’t know.

– When Will I Ever Use This? An Essay for Students Who Have Ever Asked This Question in Math Class

II. Does a football team go onto the field and lift weights? Of course the team doesn’t do that. However if they didn’t practice lifting weights then they certainly wouldn’t have a chance to win.

III. We’re actually not learning hard math that mathematicians study in university. For every subject that you think you are studying – algebra, trigonometry, calculus, etc. – you’re really just learning the introduction to these subjects! Yes, even after a year in high school calculus all you have done is scratch the surface of that field of math.

So why learn any of these math topics at all in grades K-12? Because children don’t know what they are going to be 10 or 20 years from now. So consider: If we don’t teach students how to be fluent and literate in English, then how can they read and learn anything? How can they communicate using the written word? They literally would be unable to even consider a career, right?

Now realize that the same is true for math. If we don’t teach students how to be fluent and literate in mathematics and logical thinking, then how could they ever even have a chance to consider a career in medicine, engineering, coding, chemistry, artificial intelligence, astronomy, physics, or math? No one ever would even be able to consider such a career.

IV. Here I’m excerpting some thoughts from Al Sweigart.

A math teacher is giving a lesson on logarithms or the quadratic equation or whatever and is asked by a student, “When will I ever need to know this?”
“Most likely never,” replied the teacher without hesitation. “Most jobs and even a lot of professions won’t require you to know any math beyond basic arithmetic or a little algebra.”
“But,” the teacher continued, “let me ask you this. Why do people go to the gym and lift weights? Do they all plan on becoming Olympic weight lifters, or professional body builders? Do they think they’ll one day find an old lady trapped under a 200 pound bar bell and say, ‘This is what I’ve been training for.’”
“No, they lift weights because it makes them stronger. Learning math is important because because it makes you smarter. It forces your brain to think in a way that normally it wouldn’t think: a way that requires precision, discipline, and abstract thought. It’s more than rote memorization, or making beautiful things, or figuring out someone’s expectations and how to appease them.”
“Doing your math homework is practice for the kind of disciplined thinking where there are objective right and wrong answers. And math is ubiquitous: it comes up in a lot of other subjects and is universal across cultures. And all this is practice for thinking in a new way. And being able to think in new ways, more than anything, is what will prepare you for an unpredictable, even dangerous, future.”

IV. We learn mathematics without realizing its ramifications and applications

This attitude comes partly from ignorance and partly from our faulty education system. We learn mathematics without realizing its ramifications and applications. You have been led to believe that it is useless but it is not. Look around the world in which you live. Almost everything that you experience and enjoy is possible because of mathematics.

You drive a car. A car company uses CAD software which lets it design and model components with absurd ease. Do you know how a CAD software works? It uses rigorous mathematics from geometry to matrices.

That’s one part of it. The calculation part. To display a model on your computer screen is yet another story. Processes are set, algorithms are developed and executed. But merely developing an algorithm is not sufficient. You have to optimize it. To develop and optimize an algorithm you need mathematics. Somebody has to develop the optimization algorithm. Know that the optimization algorithm is an algorithm to optimize a different algorithm. To develop such feat you would probably need to master functions, graphs and calculus. To perform stress analysis on such a component you would need yet another algorithms. To develop them you would probably need to study finite element analysis and matrices. This is true for any industry and not just for car industry.

Consider a security firm. It need to be able to identify a person’s face. They need a face recognition algorithm. Now some geeks have developed many such algorithms. Some of them are simple and less accurate while some are highly accurate but difficult to employ.

Development of each such algorithm requires extensive knowledge of matrices, probabilities, and other 100 things but do you know what is beautiful? The security firm may audit itself and using yet another mathematical process, assess exactly what type of algorithm it would need. Mathematics. Again. This is true for any forensic analysis. Fingerprint matching, face matching, pattern recognition and what not. Many private and public security firms, law enforcement agencies and spy agencies are using and developing such specialized tools thanks to mathematics.

Let’s come to gaming. You will be thrilled to know that while playing combat games, you are actually fighting with an algorithm which can ‘learn’ you. Genetic algorithm, neural networks and such things. Google it. Imagine yourself at a scene in a game. You can’t see what’s behind you in a scene, but as you look at it, the scene develops. There are special compression algorithms who use the information of the scene in compressed format when nobody is looking at it. I guess I don’t have to repeat now but still, I will. Mathematics.

Investment funds, hedge funds and other financial institutions predict the market and make decisions using mathematical software. Again, it require, number crunching, statistics, pattern recognition (which itself requires a lot of mathematics), optimization, functions and graphs and calculus (for effective predictions). Insurance companies need to use probabilistic models of customers to come up with new policies. They invest money in stock market. Now again read this paragraph just put insurance companies in place of investment funds.

Kedar Marathe, Tata Technologies, answering on Quora.

_____________________________________

V. Kalid Azad, of BetterExplained, writes in How to Develop a Mindset for Math

Math uses made-up rules to create models and relationships. When learning, I ask:

  • What relationship does this model represent?

  • What real-world items share this relationship?

  • Does that relationship make sense to me?

They’re simple questions, but they help me understand new topics. If you liked my math posts, this article covers my approach to this oft-maligned subject. Many people have left insightful comments about their struggles with math and resources that helped them.

Math Education

Textbooks rarely focus on understanding; it’s mostly solving problems with “plug and chug” formulas. It saddens me that beautiful ideas get such a rote treatment:

  • The Pythagorean Theorem is not just about triangles. It is about the relationship between similar shapes, the distance between any set of numbers, and much more.

  • e is not just a number. It is about the fundamental relationships between all growth rates.

  • The natural log is not just an inverse function. It is about the amount of time things need to grow.

Elegant, “a ha!” insights should be our focus, but we leave that for students to randomly stumble upon themselves. I hit an “a ha” moment after a hellish cram session in college; since then, I’ve wanted to find and share those epiphanies to spare others the same pain.

But it works both ways — I want you to share insights with me, too. There’s more understanding, less pain, and everyone wins.

Math Evolves Over Time

I consider math as a way of thinking, and it’s important to see how that thinking developed rather than only showing the result. Let’s try an example.

Imagine you’re a caveman doing math. One of the first problems will be how to count things. Several systems have developed over time:

number systems Unary Roman Decimal Binary

fro Kalid Azad, BetterExplained

No system is right, and each has advantages:

  • Unary system: Draw lines in the sand — as simple as it gets. Great for keeping score in games; you can add to a number without erasing and rewriting.

  • Roman Numerals: More advanced unary, with shortcuts for large numbers.

  • Decimals: Huge realization that numbers can use a “positional” system with place and zero.

  • Binary: Simplest positional system (two digits, on vs off) so it’s great for mechanical devices.

  • Scientific Notation: Extremely compact, can easily gauge a number’s size and precision (1E3 vs 1.000E3).

Think we’re done? No way. In 1000 years we’ll have a system that makes decimal numbers look as quaint as Roman Numerals (“By George, how did they manage with such clumsy tools?”).

Negative Numbers Aren’t That Real

Let’s think about numbers a bit more. The example above shows our number system is one of many ways to solve the “counting” problem.

The Romans would consider zero and fractions strange, but it doesn’t mean “nothingness” and “part to whole” aren’t useful concepts. But see how each system incorporated new ideas.

Fractions (1/3), decimals (.234), and complex numbers (3 + 4i) are ways to express new relationships. They may not make sense right now, just like zero didn’t “make sense” to the Romans. We need new real-world relationships (like debt) for them to click.

Even then, negative numbers may not exist in the way we think, as you convince me here:

You: Negative numbers are a great idea, but don’t inherently exist. It’s a label we apply to a concept.

Me: Sure they do.

You: Ok, show me -3 cows.

Me: Well, um… assume you’re a farmer, and you lost 3 cows.

You: Ok, you have zero cows.

Me: No, I mean, you gave 3 cows to a friend.

You: Ok, he has 3 cows and you have zero.

Me: No, I mean, he’s going to give them back someday. He owes you.

You: Ah. So the actual number I have (-3 or 0) depends on whether I think he’ll pay me back. I didn’t realize my opinion changed how counting worked. In my world, I had zero the whole time.

Me: Sigh. It’s not like that. When he gives you the cows back, you go from -3 to 3.

You: Ok, so he returns 3 cows and we jump 6, from -3 to 3? Any other new arithmetic I should be aware of? What does sqrt(-17) cows look like?

Me: Get out.

Negative numbers can express a relationship:

  • Positive numbers represent a surplus of cows

  • Zero represents no cows

  • Negative numbers represent a deficit of cows that are assumed to be paid back

But the negative number “isn’t really there” — there’s only the relationship they represent (a surplus/deficit of cows). We’ve created a “negative number” model to help with bookkeeping, even though you can’t hold -3 cows in your hand. (I purposefully used a different interpretation of what “negative” means: it’s a different counting system, just like Roman numerals and decimals are different counting systems.)

By the way, negative numbers weren’t accepted by many people, including Western mathematicians, until the 1700s. The idea of a negative was considered “absurd”. Negative numbers do seem strange unless you can see how they represent complex real-world relationships, like debt.

Why All The Philosophy?

I realized that my **mindset is key to learning. **It helped me arrive at deep insights, specifically:

  • Factual knowledge is not understanding. Knowing “hammers drive nails” is not the same as the insight that any hard object (a rock, a wrench) can drive a nail.

  • Keep an open mind. Develop your intuition by allowing yourself to be a beginner again.

A university professor went to visit a famous Zen master. While the master quietly served tea, the professor talked about Zen. The master poured the visitor’s cup to the brim, and then kept pouring. The professor watched the overflowing cup until he could no longer restrain himself. “It’s overfull! No more will go in!” the professor blurted. “You are like this cup,” the master replied, “How can I show you Zen unless you first empty your cup.”

  • Be creative. Look for strange relationships. Use diagrams. Use humor. Use analogies. Use mnemonics. Use anything that makes the ideas more vivid. Analogies aren’t perfect but help when struggling with the general idea.

  • Realize you can learn. We expect kids to learn algebra, trigonometry and calculus that would astound the ancient Greeks. And we should: we’re capable of learning so much, if explained correctly. Don’t stop until it makes sense, or that mathematical gap will haunt you. Mental toughness is critical — we often give up too easily.

So What’s The Point?

I want to share what I’ve discovered, hoping it helps you learn math:

  • Math creates models that have certain relationships

  • We try to find real-world phenomena that have the same relationship

  • Our models are always improving. A new model may come along that better explains that relationship (roman numerals to decimal system).

Sure, some models appear to have no use: “What good are imaginary numbers?”, many students ask. It’s a valid question, with an intuitive answer.

The use of imaginary numbers is limited by our imagination and understanding — just like negative numbers are “useless” unless you have the idea of debt, imaginary numbers can be confusing because we don’t truly understand the relationship they represent.

Math provides models; understand their relationships and apply them to real-world objects.

Developing intuition makes learning fun — even accounting isn’t bad when you understand the problems it solves. I want to cover complex numbers, calculus and other elusive topics by focusing on relationships, not proofs and mechanics.

But this is my experience — how do you learn best?

This section by Kalid Azad was made under a Creative Commons Attribution-NonCommercial-ShareAlike license.

.

 

Fraud in science

My First Fraud Kit

Image by Aurich Lawson, ArsTechnia, Epic fraud: How to succeed in science (without doing any)

Science is a self-correcting enterprise.

But science is about investigating nature – not about investigating the human investigators themselves. Scientists don’t assume that everyone else’s research is always correct, sure. They assume that errors might exist – so that’s why we have the peer review system. But they general presume that research is earnest and honest.  When a scientist decides to engage in fraud, in some disciplines, their fake results are often harder to detect.

Topics

Lysenko, Russia, and genetics-denial

Lysenkoism was named for Russian botanist Trofim Denisovich Lysenko. It occurred in Joseph Stalin’s Soviet Union. Lysenkoism mandated that all biological research conducted in the USSR conform to a modified Lamarckian evolutionary theory. Communists wanted this to be true because it promised a biology based on a moldable view of life consistent with Marxist-Leninist dogma.

Lysenkoists employed a form of political correctness to instill terror in anyone who disagreed with their dogma. People who disagreed with them faced public denunciation, loss of Communist Party membership, loss of employment, and even arrest by the secret police. Between Lysenko’s grip on power and the “disappearances” of numerous of his opponents, it would be years until the Soviet biology program would recover. – adapted from RationalWiki.

“It was an ugly picture of what happens when science is subservient to ideology, arguable the most extreme example in history. As a result of Lysenko’s crank ideas, the famine that was already underway was worsened. Lysenkoism was also exported to other communist countries like China, who also experienced horrible famine. Millions of people starved due to Lysenko’s crank ideas, making him arguably the scientist with the largest body count in human history.” – The Return of Lysenkoism

Supposed link between personality types and cancer

A remarkable series of fraudulent papers which attempted to convince people that lung cancer wasn’t caused by cigarettes. This fake research turns out to have been funded by the cigarette lobby.

“In 1992, Anthony Pelosi voiced concerns in the British Medical Journal about controversial findings from Hans Eysenck – one of the most influential British psychologists of all time – and German researcher Ronald Grossarth-Maticek. Those findings claimed personality played a bigger part in people’s chances of dying from cancer or heart disease than smoking. Almost three decades later, Eysenck’s institution have recommended these studies be retracted from academic journals. Hannah Devlin speaks to Pelosi about the twists and turns in his ultimately successful journey. And to the Guardian’s health editor, Sarah Boseley, about how revelations from tobacco industry documents played a crucial role.”

Taking on Eysenck: one man’s mission to challenge a giant of psychology

Fake link between vaccines and autism

Andrew Wakefield, claimed that he had shown a link between vaccines and autism .

“He was found guilty of dishonesty in his research and banned from medicine by the UK General Medical Council following an investigation by Brian Deer of the London Sunday Times.” – Wikipedia

The Facts In The Case Of Dr. Andrew Wakefield, Tall Guy Investigates. The facts of the case told in graphic novel format.

Stuart Ritchie writes

By now, most people know that Wakefield’s findings have been discredited. Since 1998, there have been several large-scale, rigorous studies showing no relation between the MMR vaccine (or any other vaccine) and autism spectrum disorder. It’s also been shown that combination vaccines are just as safe as individual ones. What many aren’t aware of, though, is that the Wakefield paper, far from being an honest mistake or an understandable dead end in a tentative line of research, was fraudulent right from the beginning.

After the study’s publication and the attendant controversy, the investigative journalist Brian Deer began to dig into Wakefield’s data and, crucially, his motivations. In a series of stunning articles in The BMJ (formerly the British Medical Journal), Deer described how Wakefield misrepresented or altered the medical details of every single one of the twelve children included in his paper.

He simply invented the “fact” that all the children showed their first autism-related symptoms soon after receiving the MMR whereas in reality, some had records of symptoms beforehand, others only had symptoms many months afterward, and some never even received a diagnosis of autism at all.

As for the motivation, Deer showed, Wakefield had two major financial interests in the research turning out the way it did. First, he was being retained, on a substantial fee, by a lawyer who had plans to sue the makers of the vaccines on behalf of the parents of children with autism. Indeed, an anti-vaccine pressure group linked to this lawyer was how Wakefield recruited the patients for his study.

Second, the year before the study’s publication, he had applied for a patent for his own single measles vaccine and would thus have profited had his research frightened people away from the combined MMR. Inexcusably, neither of these interests were disclosed in the paper:

How Fraud and a Broken Publishing System Fueled the Vaccine-Autism Myth, excerpted from Science Fictions: How Fraud, Bias, Negligence, and Hype Undermine the Search for Truth, Stuart Ritchie, Metropolitan Books July 2020

Anesthesiology research fraud

Yoshitaka Fujii (Japan), researcher in anesthesiology, fabricated data in at least 183 scientific papers, setting what is believed to be a record. A committee reviewing 212 papers published by Fujii over a span of 20 years found that 126 were entirely fabricated, with no scientific work done. – Wikipedia

Books

Corrupted Science: Fraud, Ideology and Politics in Science

Articles

Retraction Watch: Reports on retractions of scientific papers and on related topics

Yoshihiro Sato: Researcher at the center of an epic fraud remains an enigma to those who exposed him

Yoshitaka Fujii: Epic fraud: How to succeed in science (without doing any)

Scientific Misconduct (Wikipedia)

 

The thinking error at the root of science denial

Excerpted from The thinking error at the root of science denial

Characteristics of science denial

from de.wikipedia.org, 5_characteristics_of_science_denial.jpg

By Jeremy P. Shapiro, Adjunct Assistant Professor of Psychological Sciences, Case Western Reserve University May 8, 2018, theconversation.com

As a psychotherapist, I see a striking parallel between a type of thinking involved in many mental health disturbances and the reasoning behind science denial. As I explain in my book “Psychotherapeutic Diagrams,” dichotomous thinking, also called black-and-white and all-or-none thinking, is a factor in depression, anxiety, aggression and, especially, borderline personality disorder.

In this type of cognition, a spectrum of possibilities is divided into two parts, with a blurring of distinctions within those categories. Shades of gray are missed; everything is considered either black or white. Dichotomous thinking is not always or inevitably wrong, but it is a poor tool for understanding complicated realities because these usually involve spectrums of possibilities, not binaries.

Spectrums are sometimes split in very asymmetric ways, with one-half of the binary much larger than the other.

For example, perfectionists categorize their work as either perfect or unsatisfactory; good and very good outcomes are lumped together with poor ones in the unsatisfactory category.

In borderline personality disorder, relationship partners are perceived as either all good or all bad, so one hurtful behavior catapults the partner from the good to the bad category.

It’s like a pass/fail grading system in which 100 percent correct earns a P and everything else gets an F.

In my observations, I see science deniers engage in dichotomous thinking about truth claims. In evaluating the evidence for a hypothesis or theory, they divide the spectrum of possibilities into two unequal parts: perfect certainty and inconclusive controversy. Any bit of data that does not support a theory is misunderstood to mean that the formulation is fundamentally in doubt, regardless of the amount of supportive evidence.

Similarly, deniers perceive the spectrum of scientific agreement as divided into two unequal parts: perfect consensus and no consensus at all. Any departure from 100 percent agreement is categorized as a lack of agreement, which is misinterpreted as indicating fundamental controversy in the field.

There is no ‘proof’ in science

In my view, science deniers misapply the concept of “proof.”

Proof exists in mathematics and logic but not in science. Research builds knowledge in progressive increments. As empirical evidence accumulates, there are more and more accurate approximations of ultimate truth but no final end point to the process.

Deniers exploit the distinction between proof and compelling evidence by categorizing empirically well-supported ideas as “unproven.” Such statements are technically correct but extremely misleading, because there are no proven ideas in science, and evidence-based ideas are the best guides for action we have.

I have observed deniers use a three-step strategy to mislead the scientifically unsophisticated. First, they cite areas of uncertainty or controversy, no matter how minor, within the body of research that invalidates their desired course of action. Second, they categorize the overall scientific status of that body of research as uncertain and controversial. Finally, deniers advocate proceeding as if the research did not exist.

For example, climate change skeptics jump from the realization that we do not completely understand all climate-related variables to the inference that we have no reliable knowledge at all. Similarly, they give equal weight to the 97 percent of climate scientists who believe in human-caused global warming and the 3 percent who do not, even though many of the latter receive support from the fossil fuels industry.

This same type of thinking can be seen among creationists. They seem to misinterpret any limitation or flux in evolutionary theory to mean that the validity of this body of research is fundamentally in doubt.

_____________________

This website is educational. Materials within it are being used in accord with the Fair Use doctrine, as defined by United States law.
§107. Limitations on Exclusive Rights: Fair Use. Notwithstanding the provisions of section 106, the fair use of a copyrighted work, including such use by reproduction in copies or phone records or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use, the factors to be considered shall include: the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes; the nature of the copyrighted work; the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and the effect of the use upon the potential market for or value of the copyrighted work. (added pub. l 94-553, Title I, 101, Oct 19, 1976, 90 Stat 2546)