Home » Physics » Forces: Laws of Motion » Extreme Engineering

Extreme Engineering

What are we learning?

Engineering is the use of physics to design buildings, tools, vehicles, or related infrastructure.  We’ll examine real world engineering projects – and see how these techniques may be extended to proposed mega-engineering projects.

Why are we learning this? We want to:

  • Ask questions that arise from examining models or a theory, to clarify and/or seek additional information and relationships.

  • Ask questions to clarify and refine a model, an explanation, or an engineering problem.

  • Evaluate a question to determine if it is testable and relevant.

  • Ask and/or evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of the design

Science and engineering practices: NSTA National Science Teacher Association

Next Generation Science Standards Appendix F: Science and Engineering Practices

Extreme Engineering: Tokyo’s Sky City

Sky City 1000 is a proposed supertall skyscraper envisioned in the Tokyo metropolitan area. It was announced in 1989 during the height of the Japanese asset price bubble. It would be 1,000 meters (3,281 ft) tall and 400 m (1,312 ft) wide at the base, and a total floor area of 8 km2 (3.1 sq mi).

The design would house 35,000 full-time residents, as well as 100,000 workers. It comprises 14 concave dish-shaped “Space Plateaus” stacked one upon the other. The interior of the plateaus would contain greenspace, and on the edges of the building, would be the apartments, offices, commercial facilities, schools, theatres, etc.

After viewing this film we can answer:

1 Where did engineers propose to build this?
2. Why did they propose building this?
3. What advantages do they believe could come from living in this?
4. What are the hazards and threats of living in a place like this?
5. What difficulties would engineers and construction workers have in building something many miles tall?

Resource: Quora: Assuming unlimited money and material, what showstoppers exist against building a skyscraper that is 5 miles tall?

Discovery Channel

Discovery Channel

Extreme Engineering: Transatlantic Tunnel

A transatlantic tunnel is a theoretical tunnel that would span the Atlantic Ocean between North America and Europe possibly for such purposes as mass transit. Some proposals envision technologically advanced trains reaching speeds of 500 to 8,000 kilometres per hour.

Most conceptions of the tunnel envision it between the United States and the United Kingdom ‒ or more specifically between New York City and London. Advantages compared to air travel could be increased speed, and use of electricity instead of scarce oil based fuel, considering a future time long after peak oil.

–  “Transatlantic tunnel.” Wikipedia, The Free Encyclopedia.

Trans-Atlantic tunnel

Possible tunnel design


What is the English Channel Tunnel? What does it connect? How was it built?


What is the Mid-Atlantic Ridge? How might it have an effect on the construction of the tunnel?

Video: Mid Atlantic Ridge

What were some of the problems associated with creating an immersed tunnel?

Resisting earthquakes: Marmaray project in Turkey

Is a Transatlantic tunnel technically possible today? Explain.

Is a Transatlantic tunnel technically possible? From Engineering Beta

What is air pressure? Why is pressure greater at deeper ocean levels?


Phet app: Under pressure

We’d need to build segments of the tunnel in land-based facilities, and then transport them by boat to their desired location. Write a paragraph explaining how this might be done:

Howstuffworks.com – Tunnels in the Big Dig

What is the Gulf Stream? How might this effect the construction of the tunnel?

Transatlantic Tunnel considerations: Worldbuilding Stack Exchange

What is friction? How does it affect the velocity of a train? What idea was proposed to solve this issue when creating the Transatlantic Tunnel?


Transatlantic Tunnel considerations: Worldbuilding Stack Exchange

Possible classroom Activities

Discuss seismic activity and the risks associated with drilling over hot spots. Locate a map and plot the hot spots of the Mid-Atlantic Ridge. Is there a way to avoid drilling through these hot spots? How far out of the way would engineers have to travel?

Research the work of Frank Davidson and Jules Verne. Although Verne’s works are science fiction, are there any similarities between his ideas and Davidson’s?

Write a paper about an immersed-tube tunnel, such as the Bay Area Rapid Transit System, or Boston’s Big Dig. How was it created? What were some of the obstacles that were encountered during its construction? Have there been any disasters for passengers traveling in the system? Has the system been improved since the disaster?


Trans-Atlantic tunnel, from maglev.net

China is planning another engineering marvel: a tunnel more than twice the length of the Channel Tunnel underneath Bohai Bay

ASME: Connecting Two Continents: The Ultimate Engineering Challenge – Across the Bering Strait

Extreme Engineering: Space Elevators


A space elevator is a proposed type of space transportation system. The main component would be a cable (also called a tether) anchored to the surface and extending into space. The design would permit vehicles to travel along the cable from a planetary surface, such as the Earth’s, directly into space or orbit, without the use of large rockets.

An Earth-based space elevator would consist of a cable with one end attached to the surface near the equator and the other end in space beyond geostationary orbit (35,800 km altitude). The competing forces of gravity, which is stronger at the lower end, and the outward/upward centrifugal force, which is stronger at the upper end, would result in the cable being held up, under tension, and stationary over a single position on Earth. See Space elevator article (Wikipedia)

Video – NOVA Science Now 

NOVA Science Now Space elevator – 11 minutes

Youtube. NOVA scienceNOW : 29 – Space Elevator

Pre-viewing: learn these vocabulary terms

  1. geosynchronous orbit
  2. prototype:  
  3. buckyball: 
  4. carbon nanotubes: 
  5. What are the arrangements of carbon atoms in: Diamonds, coal, graphite

Size and scale

The carbon nanotube space elevator would transport materials into geosynchronous orbit around Earth. How does the distance of this geosynchronous orbit compare to the distance of space explored by a space shuttle? Give students the Size and Distance Stats below and have them calculate, then show, the scale of the two orbits.
Have students use sheets of paper to make models showing the scale. Place the sheets side by side for comparison.

Size and Distance Stats
Earth is represented by a 10″ globe (or use whatever size globe you have)

actual diameter of Earth = 8,000 miles

space shuttle orbit = use an orbit of 200 miles above surface of Earth
( Note: The space shuttle’s orbit ranges from 115 to 250 miles.)

geosynchronous satellite orbit = 22,000 miles above surface of Earth

After viewing

In building a space elevator:
7. Which of these components/materials would be the most difficult to obtain?
8. Which are readily available?
9. How long are the longest carbon nanotubes made so far?
10. What are some of the other challenges we would encounter in building this? (Note 2 – and also briefly note possible solutions. See the endcard, below.)

A basic space elevator

Carbon nanotubes are one of the best candidates for a material strong enough to create a space elevator.

carbon nanotubes


Analyzing a space elevator with a simple free-body diagram

Illustration of the Coriolis force

AP Physics Space Elevator analysis

Additional video resources

Engineering challenges lie ahead

From NOVA Science Now

Specific engineering challenges


Da Vinci’s Technology (Modern Marvels)

See the video online Modern Marvels S11 E56 Da Vinci Tech

From History.com

Leonardo da Vinci (1452-1519) was a painter, architect, inventor, and student of all things scientific. His natural genius crossed so many disciplines that he epitomized the term “Renaissance man.”
Today he remains best known for his art, including two paintings that remain among the world’s most famous and admired, Mona Lisa and The Last Supper.
Art, da Vinci believed, was indisputably connected with science and nature.
Largely self-educated, he filled dozens of secret notebooks with inventions, observations and theories about pursuits from aeronautics to anatomy. But the rest of the world was just beginning to share knowledge in books made with moveable type, and the concepts expressed in his notebooks were often difficult to interpret.
As a result, though he was lauded in his time as a great artist, his contemporaries often did not fully appreciate his genius—the combination of intellect and imagination that allowed him to create, at least on paper, such inventions as the bicycle, the helicopter and an airplane based on the physiology and flying capability of a bat.

– http://www.history.com/topics/leonardo-da-vinci

Da Vinci flying-machine

Davinci car

Modern Marvels is an American television series on the History Channel. It focuses on how technologies affect today’s society. Modern Marvels has produced over 650 one-hour episodes covering various topics involving (to list a few) science, technology, electronics, mechanics, engineering, architecture, industry, mass production, manufacturing, and agriculture.

da-vinci-invention illustrations

Da Vinci’s World – Engineering An Empire

Engineering an Empire is a program on The History Channel that explores the engineering and architectural feats of some of the greatest societies on this planet. It is hosted by Peter Weller, famous as an actor, but also a lecturer at Syracuse University, where he completed his Master’s in Roman and Renaissance Art. The executive producer is Delores Gavin.

Engineering an Empire

Learning Standards

2016 Massachusetts Science and Technology/Engineering Curriculum Framework
HS-PS2-1. Analyze data to support the claim that Newton’s second law of motion is a mathematical model describing change in motion (the acceleration) of objects when acted on by a net force.

HS-PS2-10(MA). Use free-body force diagrams, algebraic expressions, and Newton’s laws of motion to predict changes to velocity and acceleration for an object moving in one dimension in various situations

2016 High School Technology/Engineering

HS-ETS1-1. Analyze a major global challenge to specify a design problem that can be improved. Determine necessary qualitative and quantitative criteria and constraints for solutions, including any requirements set by society.

HS-ETS1-2. Break a complex real-world problem into smaller, more manageable problems that each can be solved using scientific and engineering principles.

HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, aesthetics, and maintenance, as well as social, cultural, and environmental impacts.

HS-ETS1-4. Use a computer simulation to model the impact of a proposed solution to a complex real-world problem that has numerous criteria and constraints on the interactions within and between systems relevant to the problem.

HS-ETS1-5(MA). Plan a prototype or design solution using orthographic projections and isometric drawings, using proper scales and proportions.

HS-ETS1-6(MA). Document and present solutions that include specifications, performance results, successes and remaining issues, and limitations.

%d bloggers like this: