Home » Physics » Forces: Laws of Motion » Mechanical Equilibrium

Mechanical Equilibrium

What is mechanical equilibrium and why do we study it? From the blog Being Brunel: Notes From a Civil Engineer

So the next time you pick-up some engineering calculations (as I’m sure you do everyday), look-out for the incantation ΣF = 0. By invoking this statement, engineers call the structure into equilibrium; and once you know that a body is in equilibrium, working out the forces at any point within the structure is as simple as balancing the equation.

Here’s the original essay: Engineering Fundamentals: Equilibrium

____________________

Conceptual Physics, Paul Hewitt, Chapter 2

*

*

*

*

*

*

*

*

*

http://www.fromquarkstoquasars.com/20-gifs-teach-science-concepts-seconds/ This is how Tension works in relation to falling objects (watch a slinky fall to the Earth; this is how slinkies always fall)

*

*

*

*

*

*

*

*

*

*

*

*

*

Learning Standards

2016 Massachusetts Science and Technology/Engineering Curriculum Framework
HS-PS2-1. Analyze data to support the claim that Newton’s second law of motion is a
mathematical model describing change in motion (the acceleration) of objects when
acted on by a net force.

HS-PS2-10(MA). Use free-body force diagrams, algebraic expressions, and Newton’s laws of motion to predict changes to velocity and acceleration for an object moving in one dimension in various situations

A FRAMEWORK FOR K-12 SCIENCE EDUCATION: Practices, Crosscutting Concepts, and Core Ideas
PS2.A: FORCES AND MOTION
How can one predict an object’s continued motion, changes in motion, or stability?

Interactions of an object with another object can be explained and predicted using the concept of forces, which can cause a change in motion of one or both of the interacting objects… At the macroscale, the motion of an object subject to forces is governed by Newton’s second law of motion… An understanding of the forces between objects is important for describing how their motions change, as well as for predicting stability or instability in systems at any scale.

Massachusetts Science and Technology/Engineering Curriculum Framework (2006)

1. Motion and Forces. Central Concept: Newton’s laws of motion and gravitation describe and predict the motion of most objects.

1.4 Interpret and apply Newton’s three laws of motion.
1.5 Use a free-body force diagram to show forces acting on a system consisting of a pair of
interacting objects. For a diagram with only co-linear forces, determine the net force acting on a system and between the objects.
1.6 Distinguish qualitatively between static and kinetic friction, and describe their effects on the motion of objects.
1.7 Describe Newton’s law of universal gravitation in terms of the attraction between two objects, their masses, and the distance between them.
1.8 Describe conceptually the forces involved in circular motion.