Home » Physics » Modern Physics » Quantum mechanics

# Quantum mechanics

## Recommended books

### I suggest these books. If one puts in the effort then one comes out with a better understanding of the subject.

The Cosmic Code: Quantum Physics as the Language of Nature, Heinz R. Pagels

Quantum Reality: Beyond the New Physics, Nick Herbert

In Search of Schrödinger’s Cat: Quantum Physics and Reality, John Gribbon

## Learning Standards

SAT Subject Test: Physics

Quantum phenomena, such as photons and photoelectric effect
Atomic, such as the Rutherford and Bohr models, atomic energy levels, and atomic spectra
Nuclear and particle physics, such as radioactivity, nuclear reactions, and fundamental particles
Relativity, such as time dilation, length contraction, and mass-energy equivalence

A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012)

Electromagnetic radiation can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. Quantum theory relates the two models…. Knowledge of quantum physics enabled the development of semiconductors, computer chips, and lasers, all of which are now essential components of modern imaging, communications, and information technologies.

Massachusetts Science and Technology/Engineering Curriculum Framework 2006

Chemistry: Atomic Structure and Nuclear Chemistry
Atomic models are used to explain atoms and help us understand the interaction of elements and compounds observed on a macroscopic scale. Nuclear chemistry deals with radioactivity, nuclear processes, and nuclear properties. Nuclear reactions produce tremendous amounts of energy and lead to the formation of elements.

2.1 Recognize discoveries from Dalton (atomic theory), Thomson (the electron), Rutherford (the nucleus), and Bohr (planetary model of atom), and understand how each discovery leads to modern theory.
2.2 Describe Rutherford’s “gold foil” experiment that led to the discovery of the nuclear atom. Identify the major components (protons, neutrons, and electrons) of the nuclear atom and explain how they interact.
2.3 Interpret and apply the laws of conservation of mass, constant composition (definite proportions), and multiple proportions.
2.4 Write the electron configurations for the first twenty elements of the periodic table.
2.5 Identify the three main types of radioactive decay (alpha, beta, and gamma) and compare their properties (composition, mass, charge, and penetrating power).
2.6 Describe the process of radioactive decay by using nuclear equations, and explain the concept of half-life for an isotope (for example, C-14 is a powerful tool in determining the age of objects).
2.7 Compare and contrast nuclear fission and nuclear fusion.

AP Physics Curriculum Framework
Essential Knowledge 1.D.1: Objects classically thought of as particles can exhibit properties of waves.
a. This wavelike behavior of particles has been observed, e.g., in a double-slit experiment using elementary particles.
b. The classical models of objects do not describe their wave nature. These models break down when observing objects in small dimensions.

Learning Objective 1.D.1.1:
The student is able to explain why classical mechanics cannot describe all properties of objects by articulating the reasons that classical mechanics must be refined and an alternative explanation developed when classical particles display wave properties.

Essential Knowledge 1.D.2: Certain phenomena classically thought of as waves can exhibit properties of particles.
a. The classical models of waves do not describe the nature of a photon.
b. Momentum and energy of a photon can be related to its frequency and wavelength.

Content Connection: This essential knowledge does not produce a specific learning objective but serves as a foundation for other learning objectives in the course.