Home » Physics » Scientific method

Scientific method

Mind Brain Gears Thinking Cognition

Image by Gerd Altmann, Pixabay, Free for commercial use


Why does science even matter in the first place?

Be careful to distinguish science from pseudoscience

What is a scientific model?

When can correlation equal causation?

Data needs an interpretation to have meaning

Good hypothesis vs bad hypothesis

The importance of peer review

The placebo effect

Converging lines of evidence


Psychology of science, pseudoscience, and fraud

Why is it so hard to teach people anything?

The Backfire Effect: You’re Not Going to Believe What I’m Going To Tell You


Science denialism vs skepticism

The thinking error at the root of science denial

Fraud in Science

Science and Discovery channels no longer teaching science


Thinking skills, Logic, and Cognitive bias

Survivorship bias (a form of cognitive bias)

Your Logical Fallacy Is

Logical Fallacies and the Art of Debate

Difference Between Logical Fallacies and Cognitive Biases

In the early 1970s, two behavioral researchers, Daniel Kahneman and Amos Tversky pioneered the field of behavioral economics through their work with cognitive biases and heuristics, which like logical fallacies, deal with errors in reasoning.

The main difference, however, is that logical fallacies require an argument whereas cognitive biases and heuristics (mental shortcuts) refer to our default pattern of thinking. Sometimes there is crossover.

Logical fallacies can be the result of a cognitive bias, but having biases (which we all do) does not mean that we have to commit logical fallacies.

Consider the bandwagon effect, a cognitive bias that demonstrates the tendency to believe things because many other people believe them. This cognitive bias can be found in the logical fallacy, appeal to popularity.

Excerpted from Logically Fallacious by Robert “Bo” Bennett

Science is not a belief

In politics, changing your position is seen as a weakness. People call it “flip flopping.”

But in science it is good to be open to new ideas – to change your mind if evidence shows you a better way of understanding something.

It's Ok to change your opinion evidence

Neil Degrasse Tyson

Science is not a position. Science is a method that allows us to test claims.

In science we approach claims skeptically.

That doesn’t mean that that we don’t believe anything. Rather, to be skeptical means we don’t accept a claim unless we are given compelling evidence.

Skepticism is a provisional approach to claims.

skeptic no amount of belief

The Scientific Method

Is there a scientific method? Yes, but it usually isn’t as simple as what you may have learned.

Ask a Question Research Hypothesis flowchart

What’s wrong with this sequence? Well, although science can work this way, it usually doesn’t. It’s not like following a recipe in a cookbook.

What does “hypothesis” mean?

Science starts with people looking at different aspects of the natural world. We call this research.

Eventually people may notice patterns, or they wonder why things behave the way that they do.

At that point they may make a hypothesis.But what is a hypothesis? This word has different meanings, in different fields.

If you’re repairing a car then a hypothesis might be an idea about why the car isn’t working.  So the “hypothesis” is something narrow, specific to this criminal case.

If you were detective investigating a crime then a hypothesis might be an idea about how a criminal committed a specific crime. So the “hypothesis” is something narrow, specific to this case.

But in science the word hypothesis has a very different meaning:

Related articles

We don’t always need to make a hypothesis

How to create a hypothesis


Scientific Method coming up with an idea

The University of California Museum of Paleontology, Berkeley (c)


Science doesn’t work for every type of question

Science doesn’t answer questions about value, beauty, meaning or ethics.

Science does not address supernatural claims.

Science has limits: Here is what science does not do.

Peer Review


Scientists describe their methods and results: They publish in peer‑reviewed journals. Others can then repeat the work, and offer constructive criticism.

If others get the same result, then we can say with a higher degree of certainty that our hypothesis is correct,

If others get different results, then something might be wrong or overlooked.

Peer review is necessary – only by working with others can we be sure that our results are trustworthy.


We do our best to aim for truth

Erwin Schrödinger writes

Erwin Schrodinger The Scientist Imposes Only Truth Sincerity

We can’t always trust our senses

Why do we need science? We often perceive things that are not really there:

Apophenia /æpɵˈfiːniə/ is a human tendency of perceiving patterns or connections in random or meaningless information.

Pareidolia (/pærɨˈdoʊliə/ parr-i-doh-lee-ə) is the visual or auditory form of apophenia. People may perceive patterns in images and sounds, that really are not there. Common examples are perceived images of animals, faces, or objects in cloud formations; the “man in the moon”; and claims of hidden messages within recorded music played in reverse.

The Rorschach inkblot test is a famous example of psychologists attempting to use pareidolia, in an attempt to gain insight into a person’s mental state. (However it should be noted that the Rorschach test itself is no longer widely considered to produce useful informationn.)

The clustering illusion is the tendency to erroneously consider the inevitable “streaks” or “clusters” arising in small samples from random distributions to be non-random.

Confirmation bias is the tendency to search for, interpret, and favor information in a way that confirms one’s beliefs, while giving disproportionately less attention to information that contradicts it.

Four examples of questions we can use science to answer

Critical thinking paper!

The science wars: postmodernism as a threat against truth and reason

Related articles

Newton didn’t frame hypotheses. Why should we? – Physics Today

Learning Objectives

2016 Massachusetts Science and Technology/Engineering Standards
Students will be able to:
* plan and conduct an investigation, including deciding on the types, amount, and accuracy of data needed to produce reliable measurements, and consider limitations on the precision of the data
* apply scientific reasoning, theory, and/or models to link evidence to the claims and assess the extent to which the reasoning and data support the explanation or conclusion;
* respectfully provide and/or receive critiques on scientific arguments by probing reasoning and evidence and challenging ideas and conclusions, and determining what additional information is required to solve contradictions
* evaluate the validity and reliability of and/or synthesize multiple claims, methods, and/or designs that appear in scientific and technical texts or media, verifying the data when possible.

A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012)
Implementation: Curriculum, Instruction, Teacher Development, and Assessment
“Through discussion and reflection, students can come to realize that scientific inquiry embodies a set of values. These values include respect for the importance of logical thinking, precision, open-mindedness, objectivity, skepticism, and a requirement for transparent research procedures and honest reporting of findings.”

Next Generation Science Standards: Science & Engineering Practices
● Ask questions that arise from careful observation of phenomena, or unexpected results, to clarify and/or seek additional information.
● Ask questions that arise from examining models or a theory, to clarify and/or seek additional information and relationships.
● Ask questions to determine relationships, including quantitative relationships, between independent and dependent variables.
● Ask questions to clarify and refine a model, an explanation, or an engineering problem.
● Evaluate a question to determine if it is testable and relevant.
● Ask questions that can be investigated within the scope of the school laboratory, research facilities, or field (e.g., outdoor environment) with available resources and, when appropriate, frame a hypothesis based on a model or theory.
● Ask and/or evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of the design

MA 2016 Science and technology

Appendix I Science and Engineering Practices Progression Matrix

Science and engineering practices include the skills necessary to engage in scientific inquiry and engineering design. It is necessary to teach these so students develop an understanding and facility with the practices in appropriate contexts. The Framework for K-12 Science Education (NRC, 2012) identifies eight essential science and engineering practices:

1. Asking questions (for science) and defining problems (for engineering).
2. Developing and using models.
3. Planning and carrying out investigations.
4. Analyzing and interpreting data.
5. Using mathematics and computational thinking.
6. Constructing explanations (for science) and designing solutions (for engineering).
7. Engaging in argument from evidence.
8. Obtaining, evaluating, and communicating information.

Scientific inquiry and engineering design are dynamic and complex processes. Each requires engaging in a range of science and engineering practices to analyze and understand the natural and designed world. They are not defined by a linear, step-by-step approach. While students may learn and engage in distinct practices through their education, they should have periodic opportunities at each grade level to experience the holistic and dynamic processes represented below and described in the subsequent two pages… http://www.doe.mass.edu/frameworks/scitech/2016-04.pdf

%d bloggers like this: